Effective monitoring techniques and equipment are essential for the prevention and control of coal and rockdynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation andr...Effective monitoring techniques and equipment are essential for the prevention and control of coal and rockdynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation andrupture of coal rock body and the charge signals contain a large amount of information about the mechanicalprocess of deformation and rupture of coal rock, the rockburst charge sensing monitoring technology has beenformed. In order to improve the charge sensing technology for monitoring and early warning of rockburst disasters, this paper develops a new generation of portable coal rock charge monitoring instrument on the basis ofthe original instrument and carries out laboratory and underground field application. The primary advancementinvolves enhancing the external structure of the sensor and increasing the charge sensing area, which can morecomprehensively capture the charge signals from the loaded rupture of the coal rock body. The overall structure ofthe data acquisition instrument has been improved, the monitoring channels have been increased, and thefunction of displaying the monitoring data curve has been added, so that the coal and rock body force status canbe grasped in time. The results of the experimental study show that the abnormal charge signals can be monitoredduring the rupture process of rock samples under loading, and the monitored charge signals are in good agreement with the sudden change of stress in the rock samples and the formation of crack extension. There is aprecursor charge signal before the stress mutation, and the larger the loading rate is, the earlier the precursorcharge signal appears. The charge monitoring instrument can monitor the charge signal of the coal seam roadwayunder strong mining pressure. In the zone of elevated overburden pressure, the amount of induced charge is large,and anomalously high value charge signals can be monitored when a coal shot occurs. The change trend of thecharge at different measuring points of strike and inclination has a good consistency with the distribution ofoverrunning support pressure and lateral support pressure, which can reflect the stress distribution and the degreeof stress concentration of the coal body through the size and location of the charge, foster early warning andanalysis of rockburst, and provide target guidance for the prevention and control of rockburst.展开更多
基金support of the National Natural Science Foundation of China(Grant no.52304219,52374201)the Liaoning Provincial Science and Technology Plan Project(Grant no.2022-BS-117)Open Project of Liaoning Technical University Liaoning Province Key Laboratory of Mining Environment and Disaster Mechanics(Grant no.MEDM2023-B-5).
文摘Effective monitoring techniques and equipment are essential for the prevention and control of coal and rockdynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation andrupture of coal rock body and the charge signals contain a large amount of information about the mechanicalprocess of deformation and rupture of coal rock, the rockburst charge sensing monitoring technology has beenformed. In order to improve the charge sensing technology for monitoring and early warning of rockburst disasters, this paper develops a new generation of portable coal rock charge monitoring instrument on the basis ofthe original instrument and carries out laboratory and underground field application. The primary advancementinvolves enhancing the external structure of the sensor and increasing the charge sensing area, which can morecomprehensively capture the charge signals from the loaded rupture of the coal rock body. The overall structure ofthe data acquisition instrument has been improved, the monitoring channels have been increased, and thefunction of displaying the monitoring data curve has been added, so that the coal and rock body force status canbe grasped in time. The results of the experimental study show that the abnormal charge signals can be monitoredduring the rupture process of rock samples under loading, and the monitored charge signals are in good agreement with the sudden change of stress in the rock samples and the formation of crack extension. There is aprecursor charge signal before the stress mutation, and the larger the loading rate is, the earlier the precursorcharge signal appears. The charge monitoring instrument can monitor the charge signal of the coal seam roadwayunder strong mining pressure. In the zone of elevated overburden pressure, the amount of induced charge is large,and anomalously high value charge signals can be monitored when a coal shot occurs. The change trend of thecharge at different measuring points of strike and inclination has a good consistency with the distribution ofoverrunning support pressure and lateral support pressure, which can reflect the stress distribution and the degreeof stress concentration of the coal body through the size and location of the charge, foster early warning andanalysis of rockburst, and provide target guidance for the prevention and control of rockburst.