期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data
1
作者 haoli xu Xing Yang +13 位作者 Yihua Hu Daqing Wang Zhenyu Liang Hua Mu Yangyang Wang Liang Shi Haoqi Gao Daoqing Song Zijian Cheng Zhao Lu Xiaoning Zhao Jun Lu Bingwen Wang Zhiyang Hu 《Environmental Science and Ecotechnology》 SCIE 2024年第6期327-338,共12页
Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box&q... Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas,level IV in the northern region,and level V in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments. 展开更多
关键词 Intelligent environmental assessment TRANSFORMER Multi-source data Explainable AI
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部