期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hierarchical Ag-SiO_2@Fe_3O_4magnetic composites for elemental mercury removal from non-ferrous metal smelting flue gas 被引量:7
1
作者 Yongpeng Ma Bailong Mu +4 位作者 Xiaojing Zhang Hongzhong Zhang haomiao xu Zan Qu Li Gao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第5期111-120,共10页
Hierarchical Ag-SiO_2@Fe_3O_4 magnetic composites were selected for elemental mercury(Hg^0) removal from non-ferrous metal smelting flue gas in this study. Results showed that the hierarchical Ag-SiO_2@Fe_3O_4 magneti... Hierarchical Ag-SiO_2@Fe_3O_4 magnetic composites were selected for elemental mercury(Hg^0) removal from non-ferrous metal smelting flue gas in this study. Results showed that the hierarchical Ag-SiO_2@Fe_3O_4 magnetic composites had favorable Hg^0 removal ability at low temperature. Moreover, the adsorption capacity of hierarchical magnetic composite is much larger than that of pure Fe_3O_4 and SiO_2@Fe_3O_4. The Hg^0 removal efficiency reached the highest value as approximately 92% under the reaction temperature of 150°C, while the removal efficiency sharply reduced in the absence of O_2. The characterization results indicated that Ag nanoparticles grew on the surface of SiO_2@Fe_3O_4 support. The large surface area of SiO_2 supplied efficient reaction room for Hg and Ag atoms. Ag–Hg amalgam is generated on the surface of the composites. In addition, this magnetic material could be easily separated from fly ashes when adopted for treating real flue gas, and the spent materials could be regenerated using a simple thermal-desorption method. 展开更多
关键词 ELEMENTAL MERCURY SILVER nanoparticles Magnetic composites Non-ferrous metal FLUE gas
原文传递
Enhanced simultaneous absorption of NO_(x) and SO_(2) in oxidation-reduction-absorption process with a compounded system based on Na_(2)SO_(3) 被引量:2
2
作者 Sichao Li Wenjun Huang +5 位作者 haomiao xu Kai Liu Jia-nan Wang Yaning Sun Zan Qu Naiqiang Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期1-10,共10页
Oxidation of sulfite and competitive absorption existed in Na_(2)SO_(3) solution for simultaneous removal of NO_(x) and SO_(2),inhibited the long-term high-efficiency when used for practical applications.A matching st... Oxidation of sulfite and competitive absorption existed in Na_(2)SO_(3) solution for simultaneous removal of NO_(x) and SO_(2),inhibited the long-term high-efficiency when used for practical applications.A matching strategy was developed to solve these problems.Antioxidants combination was used to retard the oxidation of antioxidant and enhance inhibition of S(IV)(tetravalent sulfur)oxidation.Hydroquinone(HQ)and sodium thiosulfate(ST)showed a positive synergistic effect on inhibition of S(IV)oxidation.When SO_(2) concentration was 500 and 2000 ppmV,the addition of 0.1 wt.%HQ and 1 wt.%ST decreased the percentage of S(IV)oxidized by oxygen by over 30%and 40%,respectively.Alkali(Na_(2)CO_(3))alleviated the competitive absorption between NO_(x) and SO_(2).Moreover,Na_(2)CO_(3) exhibited an enhancement effect on the absorption of NO_(x) and SO_(2) when coupled with anti-oxidants.While the increase of oxygen pressure accelerated the oxidation of S(IV),the anti-oxidants can retard the oxidation.The measurement of pH suggested the removal efficiency of NO_(x) highly depended on SO_(3)^(2-) concentration rather than pH.The further investigation of the mechanism suggested the match effect was related to the interaction between ST and the intermediate product of HQ.The match strategy holds a potential for application of SO_(3)^(2-) to denitration. 展开更多
关键词 DENITRATION Non-ferrous metal smelting flue gas Oxidation inhibition Oxidation-reduction-absorption Synergistic effect
原文传递
Absorption characteristics of elemental mercury in mercury chloride solutions 被引量:4
3
作者 Yongpeng Ma haomiao xu +2 位作者 Zan Qu Naiqiang Yan Wenhua Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第11期2257-2265,共9页
Elemental mercury (Hg^0) in flue gases can be efficiently captured by mercury chloride (HgCl2) solution. However, the absorption behaviors and the influencing effects are still poorly understood. The mechanism of ... Elemental mercury (Hg^0) in flue gases can be efficiently captured by mercury chloride (HgCl2) solution. However, the absorption behaviors and the influencing effects are still poorly understood. The mechanism of Hg^0 absorption by HgCl2 and the factors that control the removal were studied in this paper. It was found that when the mole ratio of Cl^- to HgCl2 is 10:1, the Hg^0 removal efficiency is the highest. Among the main mercury chloride species, HgCl3^- is the most efficient ion for Hg^0 removal in the HgCl2 absorption system when moderate concentrations of chloride ions exist. The Hg^0 absorption reactions in the aqueous phase were investigated computationaIIy using Moller-Plesset perturbation theory. The calculated Gibbs free energies and energy barriers are in excellent agreement with the results obtained from experiments. In the presence of SO3^2- and SO2, Hg^2+ reduction occurred and Hg^0 removal efficiency decreased. The reduced Hg^0 removal can be controlled through increased chloride concentration to some degree. Low pH value in HgCla solution enhanced the Hg^0 removal efficiency, and the effect was more significant in dilute HgCl2 solutions. The presence of SO4^2- and NO3^- did not affect Hg^0 removal by HgCl2. 展开更多
关键词 Nonferrous metal Smelting flue gas Elemental mercury Mercury chloride
原文传递
Surface protection method for the magnetic core using covalent organic framework shells and its application in As(Ⅲ)depth removal from acid wastewater
4
作者 Wenjun Huang haomiao xu +5 位作者 Xiaoshuang Liu Longlong Wang Shutang Li Leipeng Ji Zan Qu Naiqiang Yan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期1-9,共9页
Fe_(3)O_(4)-based materials are widely used for magnetic separation from wastewater.However,they often suffer from Fe-leaching behavior under acidic conditions,decreasing their ac-tivity and limiting sustainable pract... Fe_(3)O_(4)-based materials are widely used for magnetic separation from wastewater.However,they often suffer from Fe-leaching behavior under acidic conditions,decreasing their ac-tivity and limiting sustainable practical applications.In this study,covalent organic frame-works(COFs)were used as the shell to protect the Fe_(3)O_(4) core,and the Fe_(3)O_(4)@COF core-shell composites were synthesized for As(Ⅲ)removal from acid wastewater.The imine-linked COFs can in situ grow on the surface of the Fe_(3)O_(4) core layer by layer with[COFs/Fe_(3)O_(4)]mol ratio of up to 2∶1.The Fe-leaching behavior was weakened over a wide pH range of 1-13.Moreover,such composites keep their magnetic characteristic,making them favorable for nanomaterial separation.As(Ⅲ)batch adsorption experiments results indicated that,when COFs are used as the shell for the Fe_(3)O_(4) core,a balance between As(Ⅲ)removal efficiencies and the thickness of the COF shell exists.Higher As(Ⅲ)removal efficiencies are obtained when the[COFs/Fe_(3)O_(4)]mol ratios were<1.5∶1,but thicker COF shells were not beneficial for As(Ⅲ)removal.Such composites also exhibited better As(Ⅲ)removal performances in the pH range of 1-7.Over a wide pH range,the zeta potential of Fe_(3)O_(4)@COF core-shell compos-ites becomes more positive,which benefits the capture of negative arsenic ions.In addition,thinner surface COFs were favorable for mass transfer and facilitating the reaction of Fe and As elements.Our study highlights the promise of using COFs in nanomaterial surface protection and achieving As(Ⅲ)depth removal under acidic conditions. 展开更多
关键词 Arsenic ions Covalent Organic Framework Core-shell structure Surface protectionLayer Thickness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部