期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Influence of particle size and ionic strength on the freeze-thaw stability of emulsions stabilized by whey protein isolate 被引量:2
1
作者 Hao Lai Fuchao Zhan +5 位作者 Yujie Wei Abel W.S.Zongo Sha Jiang haomin sui Bin Li Jing Li 《Food Science and Human Wellness》 SCIE 2022年第4期922-932,共11页
The influence of particle size and ionic strength on the freeze-thaw(FT) stability of emulsions stabilized by whey protein isolate(WPI) was investigated in this study. The destabilization of emulsions during the FT pr... The influence of particle size and ionic strength on the freeze-thaw(FT) stability of emulsions stabilized by whey protein isolate(WPI) was investigated in this study. The destabilization of emulsions during the FT process could be suppressed in a way by decreasing the particle size of the initial emulsions, which was the result of retarding the coalescence between oil droplets. To further improve the FT stability of emulsions, different amounts of Na Cl were added before emulsification. The emulsions with the ionic strength at 30–50 mmol/L exhibited good FT stability. Notably, the ionic strength in this range would not lower the freezing point of emulsions below the freezing temperature used in this study. Salt addition could improve the structural properties of proteins, which was available to strengthen the rigidity and thickness of interfacial layers, sequentially building up the resistance that the destruction of ice crystals to emulsions. Moreover, stronger flocculation between emulsion droplets could promote the formation of a gel-like network structure dominated by elasticity in the emulsion system, which might effectively inhibit the movement of droplets, and improve the FT stability of emulsions eventually. The result was of great significance for the preparation of emulsion-based foods with improved FT stability. 展开更多
关键词 EMULSION Freeze-thaw stability Whey protein isolate Particle size Ionic strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部