Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes o...Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.展开更多
The treatment and repair of bone tissue damage and loss due to infection,tumours,and trauma are major challenges in clinical practice.Artificial bone scaffolds offer a safer,simpler,and more feasible alternative to bo...The treatment and repair of bone tissue damage and loss due to infection,tumours,and trauma are major challenges in clinical practice.Artificial bone scaffolds offer a safer,simpler,and more feasible alternative to bone transplantation,serving to fill bone defects and promote bone tissue regeneration.Ideally,these scaffolds should possess osteoconductive,osteoinductive,and osseointegrative properties.However,the current first-generation implants,represented by titanium alloys,have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair.This has led to increased research on second and third generation artificial bone scaffolds,which focus on loading bioactive molecules and cells.Polymer microspheres,known for their high specific surface areas at the micro-and nanoscale,exhibit excellent cell and drug delivery behaviours.Additionally,with their unique rigid structure,microsphere scaffolds can be constructed using methods such as thermal sintering,injection,and microsphere encapsulation.These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour,aiding in bone repair within a three-dimensional network structure.This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair,focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts,aimed at advancing research in bone repair.展开更多
基金This work was supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.
基金supported by the National Natural Science Foundation of China(Nos.82402822,32200559,82372425)Natural Science Foundation of Sichuan Province(Nos.NSFSC5880,NSFSC1291)+2 种基金Chengdu Medical Research Project(No.2022004)Natural Science Foundation of Clinical Medical College and Affiliated Hospital of Chengdu University(No.Y202206)China Postdoctoral Science Foundation(No.2021M702364).
文摘The treatment and repair of bone tissue damage and loss due to infection,tumours,and trauma are major challenges in clinical practice.Artificial bone scaffolds offer a safer,simpler,and more feasible alternative to bone transplantation,serving to fill bone defects and promote bone tissue regeneration.Ideally,these scaffolds should possess osteoconductive,osteoinductive,and osseointegrative properties.However,the current first-generation implants,represented by titanium alloys,have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair.This has led to increased research on second and third generation artificial bone scaffolds,which focus on loading bioactive molecules and cells.Polymer microspheres,known for their high specific surface areas at the micro-and nanoscale,exhibit excellent cell and drug delivery behaviours.Additionally,with their unique rigid structure,microsphere scaffolds can be constructed using methods such as thermal sintering,injection,and microsphere encapsulation.These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour,aiding in bone repair within a three-dimensional network structure.This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair,focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts,aimed at advancing research in bone repair.