Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals.In the past few decades,the development of experimental techniques and simulation methods has helped...Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals.In the past few decades,the development of experimental techniques and simulation methods has helped to reveal a wealth of information about the nucleation and growth process from its microscopic aspects to macroscopic ones.Powerful and effective theoretical approaches have been developed based on this information and have helped in the analysis of the damage states of structures,thereby making an important contribution to the design of damageresistant materials.This Review presents a brief overview of theoretical models related to the mechanisms of void nucleation and growth under dynamic loading.Classical work and recent research progress are summarized,together with discussion of some aspects deserving further study.展开更多
Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study ...Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.展开更多
基金Financial support for this work was provided by the Science Challenge Project(Grant No.TZ2018001)the National Natural Science Foundation of China(Grant Nos.11988102,11632001,11521202,and 12002005).
文摘Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals.In the past few decades,the development of experimental techniques and simulation methods has helped to reveal a wealth of information about the nucleation and growth process from its microscopic aspects to macroscopic ones.Powerful and effective theoretical approaches have been developed based on this information and have helped in the analysis of the damage states of structures,thereby making an important contribution to the design of damageresistant materials.This Review presents a brief overview of theoretical models related to the mechanisms of void nucleation and growth under dynamic loading.Classical work and recent research progress are summarized,together with discussion of some aspects deserving further study.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988102,12002005,11632001,11521202)the Science Challenge Project(Grant No.TZ2018001).
文摘Softening behavior of lath martensitic steels is related to the coarsening of laths and dislocation evolution during cyclic deformation.Involving the physical mechanism,we developed a dislocation-based model to study the cyclic plastic response for lath martensitic steels.For a block,we proposed an interfacial dislocation evolution model to physically present the interaction between mobile dislocations in the block and interfacial dislocations by considering the coarsening mechanism of the laths.Moreover,the evolution behavior of backstress caused by dislocation pile up at the block boundary has been considered.Then,a hierarchical model based on the elastic-viscoplastic self-consistent(EVPSC)theory is developed,which can realize the scale transition among representative volume element(RVE),prior austenite grains(PAGs)and blocks.According to the proposed model,the effective mechanical responses including the cyclic hysteretic loop and peak stress at different cycles for lath martensitic steel have been theoretically predicted and investigated.