Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires t...Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires tedious synthesis and testing procedures,which reduces the efficiency of developing highperformance battery devices.Here,we proposed a high-throughput screening strategy based on firstprinciples calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs.We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes.Then their band structures and density of states,open circuit voltage and volume expansion rate,ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations,resulting in five potential candidates.One of the promising candidates identified,Mg_(2)MnO_(4),was experimentally synthesized,characterized and integrated into an AZIB based cell to verify its performance as a cathode.The Mg_(2)MnO_(4)cathode exhibits excellent cycling stability,which is consistent with the theoretically predicted low volume expansion.Moreover,at high current density,the Mg_(2)MnO_(4)cathode still exhibits high reversible capacity and excellent rate performance,indicating that it is an excellent cathode material for AZIBs.Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.展开更多
基金financially supported by the National Natural Science Foundation of China(52173235)Venture&Innovation Support Program for Chongqing Overseas Returnees(CX2021018)Science and Technology Innovation and Improving Project of Army Medical University(2021XJS24)。
基金This work was financially supported by research grants from the Natural Science Foundation of China(Nos.12004057,62074022,52173235)Support plan for Overseas Students to Return to China for Entrepreneurship and Innovation(No.cx2020075)+3 种基金Open Fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems(No.LLEUTS-2020008)Chongqing Funds for Distinguished Young Scientists(No.cstc2021jcyj-jqX0015)Chongqing Talent Plan(No.CQYC2021059206)Fundamental Research Funds for the Central Universities(No.2020CDJQY-A055).
文摘Aqueous zinc ion batteries(AZIBs)have attracted much attention in recent years due to their high safety,low cost,and decent electrochemical performance.However,the traditional electrodes development process requires tedious synthesis and testing procedures,which reduces the efficiency of developing highperformance battery devices.Here,we proposed a high-throughput screening strategy based on firstprinciples calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs.We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes.Then their band structures and density of states,open circuit voltage and volume expansion rate,ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations,resulting in five potential candidates.One of the promising candidates identified,Mg_(2)MnO_(4),was experimentally synthesized,characterized and integrated into an AZIB based cell to verify its performance as a cathode.The Mg_(2)MnO_(4)cathode exhibits excellent cycling stability,which is consistent with the theoretically predicted low volume expansion.Moreover,at high current density,the Mg_(2)MnO_(4)cathode still exhibits high reversible capacity and excellent rate performance,indicating that it is an excellent cathode material for AZIBs.Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.