期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Genetic dissection of the powdery mildew resistance in wheat breeding line LS5082 using BSR-Seq 被引量:2
1
作者 liru Wu Tong Zhu +9 位作者 Huagang He Xinyou Cao haosheng li Hongxing Xu Mengshu Jia lipei Zhang Jiancheng Song Ghader Mirzaghaderi Cheng liu Pengtao Ma 《The Crop Journal》 SCIE CSCD 2022年第4期1120-1130,共11页
Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese... Powdery mildew of wheat is a destructive disease seriously threatening yield and quality worldwide.Comprehensive dissection of new resistance-related loci/genes is necessary to control this disease.LS5082 is a Chinese wheat breeding line with resistance to powdery mildew.Genetic analysis,using the populations of LS5082 and three susceptible parents(Shannong 29,Shimai 22 and Huixianhong),indicated that a single dominant gene,tentatively designated PmLS5082,conferred seedling resistance to different Blumeria graminis f.sp.tritici(Bgt)isolates.Bulked segregant RNA-Seq was carried out to map PmLS5082 and to profile differentially expressed genes associated with PmLS5082.PmLS5082 was mapped to a 0.7 cM genetic interval on chromosome arm 2BL,which was aligned to a 0.7 Mb physical interval of 710.3–711.0 Mb.PmLS5082 differs from the known powdery mildew(Pm)resistance genes on chromosome arm 2BL based on their origin,chromosome positions and/or resistance spectrum,suggesting PmLS5082 is most likely a new Pm gene/allele.Through clusters of orthologous groups and kyoto encyclopedia of genes and genomes analyses,differentially expressed genes(DEGs)associated with PmLS5082 were profiled.Six DEGs in the PmLS5082 interval were confirmed to be associated with PmLS5082 via qPCR analysis,using an additional set of wheat samples and time-course analysis postinoculation with Bgt isolate E09.Ten closely linked markers,including two kompetitive allele-specific PCR markers,were confirmed to be suitable for marker-assisted selection of PmLS5082 in different genetic backgrounds,thus can be used to detect PmLS5082 and pyramid it with other genes in breeding programs. 展开更多
关键词 Wheat powdery mildew Bulked segregant RNA-seq(BSR-Seq) PmLS5082 Differentially expressed gene(DEG) Marker-assisted selection(MAS)
下载PDF
Molecular and Physical Mapping of Powdery Mildew Resistance Genes and QTLs in Wheat: A Review 被引量:7
2
作者 Jun GUO Cheng liU +8 位作者 Shengnan ZHAI haosheng li Aifeng liU Dungong CHENG Ran HAN Jianjun liU lingrang KONG Zhendong ZHAO Jianmin SONG 《Agricultural Science & Technology》 CAS 2017年第6期965-970,共6页
Wheat powdery mildew(Pm) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings o... Wheat powdery mildew(Pm) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major resistance gene mapping studies and 25 quantitative trait loci(QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance(APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromosomes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes,suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an important role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its relatives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/Sr2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resistance genes/QTLs more efficiently by marker-assisted selection. 展开更多
关键词 抗白粉病基因 小麦白粉病 QTLS 分子定位 物理定位 白粉病抗性基因 抗性基因定位 染色体位置
下载PDF
Introduction of a New Method for Regulating Laves Phases in Inconel 718 Superalloy during a Laser-Repairing Process
3
作者 Shang Sui haosheng li +3 位作者 Zuo li Xuan Zhao liang Ma Jing Chen 《Engineering》 SCIE EI CAS 2022年第9期239-246,共8页
The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase... The morphology,size,and distribution of Laves phases have important influences on the mechanical properties of laser-repaired Inconel 718(IN718)superalloy.Due to the deterioration of the substrate zone,the Laves phase in the laser cladding zone of IN718 superalloy cannot be optimized by a hightemperature solution treatment.In this study,an in situ laser heat-treatment method was proposed to regulate the morphology and size of the Laves phase in the laser cladding zone of IN718 superalloy without impacting the substrate zone.In the in situ laser heat-treatment process,a laser was used to heat previously deposited layers with optimized manufacturing parameters.A thermocouple and an infrared camera were used to analyze thermal cycles and real-time temperature fields,respectively.Microstructures and micro-segregations were observed by optical microscopy,scanning electron microscopy,and electron probe microanalysis.It was found that the in situ laser heat treatment effectively changed the morphology and size of the Laves phase,which was transformed from a continuous striplike shape to a discrete granular shape.The effective temperature range and duration were the two main factors influencing the Laves phase during the in situ laser heat-treatment process.The effective temperature range was determined by the laser linear energy density,and the peak temperature increased with the increase of the linear energy density.In addition,the temperature amplitude could be reduced by simultaneously increasing the laser power and the scanning velocity.Finally,a flow diagram was developed based on the in situ laser heat-treatment process,and the deposition of a single-walled sample with fine and granular Laves phases was detected. 展开更多
关键词 Laser repair In situ laser heat treatment Inconel 718 alloy Laves phase
下载PDF
氧调节原生负极-固态电解质界面层助力高稳定性固态钠金属电池
4
作者 曹克爽 夏宇凡 +8 位作者 李皓盛 黄慧琴 Sikandar Iqbal Muhammad Yousaf 徐斌 孙文平 严密 潘洪革 姜银珠 《Science Bulletin》 SCIE EI CAS CSCD 2024年第1期49-58,共10页
Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogenei... Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte,leading to short circuit and battery failure.Herein,confronting with the original nonuniform and high-resistance solid electrolyte interphase(SEI)at the Na-Na_(3)Zr_(2)Si_(2)PO_(12)interface,an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface,through a spontaneous reaction between the metallic sodium(containing trace amounts of oxygen)and the Na_(3)Zr_(2)Si_(2)POi_(2)SE.The oxygen-regulated spontaneous SEI is thin,uniform,and kinetically stable to facilitate homogenous interfacial Na^+transportation,Benefitting from the optimized SEI,the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm^(-2).Qua si-sol id-state batteries with Na_(3)V_(2)(PO_(4))_(3)cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C(1 C=117 mA cm^(-2))with a high capacity retention of95.4%.This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries. 展开更多
关键词 Na metal anode Solid-state batteries NASICON Anode interface Solid electrolyte interphase
原文传递
Lodging resistance and yield potential of winter wheat:effect of planting density and genotype 被引量:9
5
作者 Yonggui XIAO Jianjun liU +3 位作者 haosheng li Xinyou CAO Xianchun XIA Zhonghu HE 《Frontiers of Agricultural Science and Engineering》 2015年第2期168-178,共11页
Improved lodging resistance is important for achieving high yield in irrigated environments.This study was conducted to determine genotypic variation in lodging resistance and related morphological traits among winter... Improved lodging resistance is important for achieving high yield in irrigated environments.This study was conducted to determine genotypic variation in lodging resistance and related morphological traits among winter wheat cultivars planted at two densities,and to identify key traits associated with lodging resistance.Lodging performance of 28 genotypes,including 24 released cultivars and four advanced lines,was evaluated at 250 plants per square meter and 500 plants per square meter in Shandong province during the 2008–2009 and 2009–2010 crop seasons.At the higher density,the average grain yield was 2.6%higher,even though lodging score rose by as much as 136%.The higher planting density increased lodging through increased leaf area index(LAI),plant height,center of gravity and length of basal internodes,and reduced grain weight per spike and diameter of the lower two stem internodes.LAI,center of gravity and diameter of first internodes,as the important indicators for lodging resistance,were significantly correlated with lodging score,with R=0.62,0.59 and–0.52(P<0.01),respectively.Plant pushing resistance was significantly associated with diameter and length of the first internodes(R=0.71–0.77,P<0.01),indicating it could be used to assess the strength of the lower stem.Higher planting density could be used to select genotypes with lodging resistance in irrigated environments.Cultivars carrying high plant density tolerance and high yield potential,such as Jimai 22 and Liangxing 66,were recommended as leading cultivars for production as well as elite crossing parents for further increasing yield potential in the Yellow and Huai Valleys Winter Wheat Zone in China. 展开更多
关键词 common wheat yield potential lodging performance pushing resistance leaf area index
原文传递
Comparative proteomic analysis of cold responsive proteins in two wheat cultivars with different tolerance to spring radiation frost 被引量:3
6
作者 Shujuan ZHANG Guoqi SONG +6 位作者 Yulian li Jie GAO Jiao WANG Guiju CHEN haosheng li Genying li Zhendong ZHAO 《Frontiers of Agricultural Science and Engineering》 2014年第1期30-38,共9页
Spring radiation frost(SRF)is a severe environmental stress which impairs wheat yield and productivity worldwide.To better understand the mechanism of wheat(Triticum aestivum)responding to SRF,a comparative proteomic ... Spring radiation frost(SRF)is a severe environmental stress which impairs wheat yield and productivity worldwide.To better understand the mechanism of wheat(Triticum aestivum)responding to SRF,a comparative proteomic analysis was performed to analyze the changes of the key proteins in two wheat cultivars Jimai22 and Luyuan301 with high and low tolerance to SRF respectively.A total of 43 differentially expressed proteins(DEPs)which mainly involved in carbohydrate metabolism,amino acid metabolism,resistance proteins and antioxidant enzymes,photosynthesis and cellular respiration proteins,cell-wall related proteins,protein translation/processing/degradation and signal transduction were isolated and identified by two-dimensional electrophoresis and MALDI-TOF-TOF MS.The results revealed that of the 21 DEPs in Jimai22 responding to the SRF,13 DEPs were upregulated and 8 DEPs were downregulated,and that of the 22 DEPs in Luyuan301,9 DEPs were upregulated and 13 DEPs were downregulated.These DEPs might be responsible for the stronger cold resistance of Jimai22 compared to Luyuan301.The expression pattern and function analysis of these DEPs were very significant to understanding the mechanism of the SRF responses in wheat. 展开更多
关键词 common wheat spring radiation frost proteomic analysis 2-DE MALDI-TOF-TOF MS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部