The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduc...The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction.Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite,the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper.Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s,which is reduced by 56%compared to that of titanomagnetite reduction without pre-oxidation,while achieving a metallization degree of>90%,Corresponding to the different reduction fluidization behaviors,three pre-oxidation operation regions have been divided,taking oxidation degrees of 26%and 86%as the boundaries.Focusing on the particle surface morphology evolution in the pre-oxidation-reduction process,the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built.The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification,especially for the fluidized bed reduction of poly-metallic iron ore.展开更多
Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery vi...Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery via weak magnetic separation.We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite.We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550℃due to the unstable intermediate product magnetite(Fe_(3)O_(4)).Stable magnetite can be obtained through maghemite reduction only at low temperature.The optimal fluidized magnetization roasting parameters included preoxidation at 610℃for 2.5 min,followed by reduction at 450℃for 5 min.For roasted ore,weak magnetic separation yielded an iron ore concentrate grade of 62.0wt%and an iron recovery rate of 88.36%.Compared with that of conventional direct reduction magnetization roasting,the iron recovery rate of weak magnetic separation had greatly improved by 34.33%.The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore.展开更多
Social media is fundamentally changing the way people communicate, consume and collaborate. It provides companies a new platform to interact with their customers. In academia, there is a surge in research efforts on u...Social media is fundamentally changing the way people communicate, consume and collaborate. It provides companies a new platform to interact with their customers. In academia, there is a surge in research efforts on understanding its effects. This paper aims to provide a review of current status of social media research. We discuss the specific domains in which the impacts of social media have been examined. A brief review of applicable research methodologies and approaches is also provided.展开更多
基金grateful for financial support from the National Natural Science Foundation of China(Nos.22378405 and 51974287)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA29040100)the National Key Research and Development Program of China(No.2023YFC2908002).
文摘The direct reduction process is an important development direction of low-carbon ironmaking and efficient comprehensive utilization of poly-metallic iron ore,such as titanomagnetite.However,the defluidization of reduced iron particles with a high metallization degree at a high temperature will seriously affect the operation of fluidized bed reduction.Coupling the pre-oxidation enhancing reduction and the particle surface modification of titanomagnetite,the behavior and mechanism of pre-oxidation improvement on fluidization in the fluidized bed reduction of titanomagnetite are systematically studied in this paper.Pre-oxidation treatment of titanomagnetite can significantly lower the critical stable reduction fluidization gas velocity to 0.17 m/s,which is reduced by 56%compared to that of titanomagnetite reduction without pre-oxidation,while achieving a metallization degree of>90%,Corresponding to the different reduction fluidization behaviors,three pre-oxidation operation regions have been divided,taking oxidation degrees of 26%and 86%as the boundaries.Focusing on the particle surface morphology evolution in the pre-oxidation-reduction process,the relationship between the surface morphology of pre-oxidized ore and the reduced iron with fluidization properties is built.The improving method of pre-oxidation on the reduction fluidization provides a novel approach to prevent defluidization by particle surface modification,especially for the fluidized bed reduction of poly-metallic iron ore.
基金the National Natural Science Foundation of China(Nos.51974287 and 21736010)Innovation Academy for Green Manufacture,Chinese Academy of Sciences(No.IAGM-2019-A11).
文摘Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery via weak magnetic separation.We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite.We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550℃due to the unstable intermediate product magnetite(Fe_(3)O_(4)).Stable magnetite can be obtained through maghemite reduction only at low temperature.The optimal fluidized magnetization roasting parameters included preoxidation at 610℃for 2.5 min,followed by reduction at 450℃for 5 min.For roasted ore,weak magnetic separation yielded an iron ore concentrate grade of 62.0wt%and an iron recovery rate of 88.36%.Compared with that of conventional direct reduction magnetization roasting,the iron recovery rate of weak magnetic separation had greatly improved by 34.33%.The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants 71322104,71171007,70901002 and 71031001the National Information Security Research Plan of China under Grant 2012A137+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of PR China under Grant 201189 the Program for New Century Excellent Talents in University under Grant NCET-11-0778Dr.Yong Tan was supported in part by NSFC under Grants 71328103 and 71231002
文摘Social media is fundamentally changing the way people communicate, consume and collaborate. It provides companies a new platform to interact with their customers. In academia, there is a surge in research efforts on understanding its effects. This paper aims to provide a review of current status of social media research. We discuss the specific domains in which the impacts of social media have been examined. A brief review of applicable research methodologies and approaches is also provided.