期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Combining cold sintering and Bi_(2)O_(3)-Activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures 被引量:4
1
作者 haoyang leng Jiuyuan Nie Jian Luo 《Journal of Materiomics》 SCIE EI 2019年第2期237-246,共10页
The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at ... The cold sintering process(CSP)and Bi_(2)O_(3)-activated liquid-phase sintering(LPS)are combined to densify Mg-doped NASICON(Na_(3.256)Mg_(0.128)Zr_(1.872)Si_(2)PO_(12))to achieve high densities and conductivities at reduced temperatures.As an example,a cold-sintered specimen with the addition of 1.1wt%Bi_(2)O_(3)sintering additive achieved a high conductivity of 0.91 mS/cm(with~96%relative density)after annealing at 1000℃;this conductivity is>70%higher than that of a cold-sintered specimen without adding the Bi_(2)O_(3)sintering additive,and it is>700%of the conductivity of a dry-pressed counterpart with the same amount of Bi_(2)O_(3)added,all of which are subjected to the same heating profile.The highest conductivity achieved in this study via combining CSP and Bi_(2)O_(3)-activated LSP is>1.5 mS/cm.This study suggests an opportunity to combine the new CSP with the traditional LPS to sinter solid electrolytes to achieve high densities and conductivities at reduced temperatures.This combined CSP-LPS approach can be extended to a broad range of other materials to fabricate the“thermally fragile”solid electrolytes or solid-state battery systems,where reducing the processing temperature is often desirable. 展开更多
关键词 Cold sintering process Liquid-phase sintering NASICON Solid electrolytes Solid-state sodium-ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部