In this paper,a missile terminal guidance law based on a new Deep Deterministic Policy Gradient(DDPG)algorithm is proposed to intercept a maneuvering target equipped with an infrared decoy.First,to deal with the issue...In this paper,a missile terminal guidance law based on a new Deep Deterministic Policy Gradient(DDPG)algorithm is proposed to intercept a maneuvering target equipped with an infrared decoy.First,to deal with the issue that the missile cannot accurately distinguish the target from the decoy,the energy center method is employed to obtain the equivalent energy center(called virtual target)of the target and decoy,and the model for the missile and the virtual decoy is established.Then,an improved DDPG algorithm is proposed based on a trusted-search strategy,which significantly increases the train efficiency of the previous DDPG algorithm.Furthermore,combining the established model,the network obtained by the improved DDPG algorithm and the reward function,an intelligent missile terminal guidance scheme is proposed.Specifically,a heuristic reward function is designed for training and learning in combat scenarios.Finally,the effectiveness and robustness of the proposed guidance law are verified by Monte Carlo tests,and the simulation results obtained by the proposed scheme and other methods are compared to further demonstrate its superior performance.展开更多
This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian li...This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61973253 and 62006192)。
文摘In this paper,a missile terminal guidance law based on a new Deep Deterministic Policy Gradient(DDPG)algorithm is proposed to intercept a maneuvering target equipped with an infrared decoy.First,to deal with the issue that the missile cannot accurately distinguish the target from the decoy,the energy center method is employed to obtain the equivalent energy center(called virtual target)of the target and decoy,and the model for the missile and the virtual decoy is established.Then,an improved DDPG algorithm is proposed based on a trusted-search strategy,which significantly increases the train efficiency of the previous DDPG algorithm.Furthermore,combining the established model,the network obtained by the improved DDPG algorithm and the reward function,an intelligent missile terminal guidance scheme is proposed.Specifically,a heuristic reward function is designed for training and learning in combat scenarios.Finally,the effectiveness and robustness of the proposed guidance law are verified by Monte Carlo tests,and the simulation results obtained by the proposed scheme and other methods are compared to further demonstrate its superior performance.
基金supported by the National Natural Science Foundation of China(Nos.61374012,61273083 and 61403028)
文摘This paper deals with the problem of non-fragile linear parameter-varying(LPV) H_∞ control for morphing aircraft with asynchronous switching.The switched LPV model of morphing aircraft is established by Jacobian linearization approach according to the nonlinear model.The data missing is taken into account in the link from sensors to controllers and the link from controllers to actuators,which satisfies Bernoulli distribution.The non-fragile switched LPV controllers are constructed with consideration of the uncertainties of controllers and asynchronous switching phenomenon.The parameter-dependent Lyapunov functional method and mode-dependent average dwell time(MDADT) method are combined to guarantee the stability and prescribed performance of the system.The sufficient conditions on the solvability of the problem are derived in the form of linear matrix inequalities(LMI).In order to achieve higher efficiency of the designing process,an algorithm is applied to divide the whole set into subsets automatically.Simulation results are provided to verify the effectiveness and superiority of the method in the paper.