Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj...Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.展开更多
基金supported by research fund of Chungnam National University in 2008
文摘Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.