The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handli...The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handling a large amount of waste. Boiling two-phase flow could become powerful means for this system because a boiling and condensation system is one of the most efficient modes of heat transfer due to phase change (liquid-vapor). However, gravity effects on boiling two-phase flow phenomena and the corresponding heat transfer characteristics are not clear. Therefore, we prepare the experiments of boiling two-phase flow utilizing a long-term microgravity environment onboard a Japanese Experimental Module "KIBO" in the International Space Station (ISS) as one of the JAXA official projects. In this paper, recent progress of the preparation for the project is reported.展开更多
文摘The amount of waste heat in a space facility became larger, because of increase in the space platform size and its power consumption. It requires development of high-performance space thermal management systems handling a large amount of waste. Boiling two-phase flow could become powerful means for this system because a boiling and condensation system is one of the most efficient modes of heat transfer due to phase change (liquid-vapor). However, gravity effects on boiling two-phase flow phenomena and the corresponding heat transfer characteristics are not clear. Therefore, we prepare the experiments of boiling two-phase flow utilizing a long-term microgravity environment onboard a Japanese Experimental Module "KIBO" in the International Space Station (ISS) as one of the JAXA official projects. In this paper, recent progress of the preparation for the project is reported.