Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations...Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations revealed that the grain size of AlN particles was less than 1 μm. In spite of sub-micron grain size, composites showed relatively high thermal conductivity (TC), 55-107 W/(m·K). The thermal expansion coefficient (CTE) of the composite produced with commercial Al source, which has the highest TC of 107 W/(m·K), was 6.5×10-6 K-1. Despite the high CTE of Al (23.6×10-6 K-1), composites revealed significantly low CTE through the formation of Si and AlN phases during the infiltration process.展开更多
基金The Foundation for Scientific Research Projects of Mugla Sitki Kocman University(Project No.10/30)The Scientific&Technological Research Council of Turkey(TUBITAK,Project No:108M194)for funding the present work
文摘Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations revealed that the grain size of AlN particles was less than 1 μm. In spite of sub-micron grain size, composites showed relatively high thermal conductivity (TC), 55-107 W/(m·K). The thermal expansion coefficient (CTE) of the composite produced with commercial Al source, which has the highest TC of 107 W/(m·K), was 6.5×10-6 K-1. Despite the high CTE of Al (23.6×10-6 K-1), composites revealed significantly low CTE through the formation of Si and AlN phases during the infiltration process.