The mineralization of the organic matter is a very important phenomenon which leads to the release of nutriments used by plants. The rate of transformation of the organic matter depends on several factors and paramete...The mineralization of the organic matter is a very important phenomenon which leads to the release of nutriments used by plants. The rate of transformation of the organic matter depends on several factors and parameters such as climatic factors and biological and physicochemical properties of the soil and the litter. In this study, we investigate the effect of the addition of litter of various species as well as the effect of soil moisture on mineralization of organic matter and on mineral nitrogen release in three soils sampled in three cork oak stands during a period of 41 days under the same laboratory conditions. Carbon mineralization was determined using CO2 respiration method, whereas the mineral nitrogen content was measured at the last day of incubation both in soil samples with added plant leaf material, and in control soil samples without addition under two treatments of moisture (40% and 80% WHC—water holding capacity). Our results show that the addition of leaf litter causes an increase in the microbial activity. Soils without addition were significantly different from the plant leaf added soils in respect to carbon mineralization at the end of the incubation period. Moreover, it is noted that the mineralization of carbon is more marked with moisture at 80% than that of 40%, contrary to that of the nitrogen, which is not influenced by the variation of moisture.展开更多
文摘The mineralization of the organic matter is a very important phenomenon which leads to the release of nutriments used by plants. The rate of transformation of the organic matter depends on several factors and parameters such as climatic factors and biological and physicochemical properties of the soil and the litter. In this study, we investigate the effect of the addition of litter of various species as well as the effect of soil moisture on mineralization of organic matter and on mineral nitrogen release in three soils sampled in three cork oak stands during a period of 41 days under the same laboratory conditions. Carbon mineralization was determined using CO2 respiration method, whereas the mineral nitrogen content was measured at the last day of incubation both in soil samples with added plant leaf material, and in control soil samples without addition under two treatments of moisture (40% and 80% WHC—water holding capacity). Our results show that the addition of leaf litter causes an increase in the microbial activity. Soils without addition were significantly different from the plant leaf added soils in respect to carbon mineralization at the end of the incubation period. Moreover, it is noted that the mineralization of carbon is more marked with moisture at 80% than that of 40%, contrary to that of the nitrogen, which is not influenced by the variation of moisture.