The influence of dose variation due to heterogeneities in narrow photon beams used in stereotactic radiosurgery has been investigated. Since the lateral electronic disequilibrium and existence of steep dose gradients ...The influence of dose variation due to heterogeneities in narrow photon beams used in stereotactic radiosurgery has been investigated. Since the lateral electronic disequilibrium and existence of steep dose gradients in small fields and the presence of heterogeneities can intensify these problems, in this study the effects of heterogeneities on 6 MV small photon beams produced by circular cone collimators with 5, 10, 15, 20 and 30 mm diameters are investigated. The heterogeneities include 3 cm Cork with density of 0.2 g/cm3 instead of lung and 3 cm Polytetrafluoroethylene (P.T.F.E) with density of 2.2 g/cm3 as bone. The measurements were carried out with EBT2 gafchromic and EDR2 radiographic films. Simulation was done by MCNP Monte Carlo Code (MCNP5). The depth dose curves in heterogeneous phantom were compared with homogeneous phantom. A good agreement was obtained within film and Monte Carlo calculations in presence of low density heterogeneity and also in the presence of high density heterogeneity. Monte Carlo results showed good agreement after stopping power correction.展开更多
文摘The influence of dose variation due to heterogeneities in narrow photon beams used in stereotactic radiosurgery has been investigated. Since the lateral electronic disequilibrium and existence of steep dose gradients in small fields and the presence of heterogeneities can intensify these problems, in this study the effects of heterogeneities on 6 MV small photon beams produced by circular cone collimators with 5, 10, 15, 20 and 30 mm diameters are investigated. The heterogeneities include 3 cm Cork with density of 0.2 g/cm3 instead of lung and 3 cm Polytetrafluoroethylene (P.T.F.E) with density of 2.2 g/cm3 as bone. The measurements were carried out with EBT2 gafchromic and EDR2 radiographic films. Simulation was done by MCNP Monte Carlo Code (MCNP5). The depth dose curves in heterogeneous phantom were compared with homogeneous phantom. A good agreement was obtained within film and Monte Carlo calculations in presence of low density heterogeneity and also in the presence of high density heterogeneity. Monte Carlo results showed good agreement after stopping power correction.