期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mixed Convection Heat Transfer for Nanofluids in a Lid-Driven Shallow Rectangular Cavity Uniformly Heated and Cooled from the Vertical Sides:The Opposing Case
1
作者 hassan el harfi Mohamed Naimi +2 位作者 Mohamed Lamsaadi Abdelghani Raji Mohammed Hasnaoui 《Journal of Electronics Cooling and Thermal Control》 2013年第3期111-130,共20页
An investigation on flow and heat transfer due to mixed convection, in a lid-driven rectangular cavity filled with Cu- water nanofluids and submitted to uniform heat flux along with its vertical short sides, has been ... An investigation on flow and heat transfer due to mixed convection, in a lid-driven rectangular cavity filled with Cu- water nanofluids and submitted to uniform heat flux along with its vertical short sides, has been conducted numerically by solving the full governing equations with the finite volume method and the SIMPLER algorithm. In the case of a slender enclosure, these equations are considerably reduced by using the parallel flow concept. Solutions, for the flow and temperature fields, and the heat transfer rate, have been obtained depending on the governing parameters, which are the Reynolds, the Richardson numbers and the solid volume fraction of nanoparticles. A perfect agreement has been found between the results of the two approaches for a wide range of the abovementioned parameters. It has been shown that at low and high Richardson numbers, the convection is ensured by lid and buoyancy-driven effects, respectively, whereas between these extremes, both mechanisms compete. Moreover, the addition of Cu-nanoparticles, into the pure water, has been seen enhancing and degrading heat transfer by lid and buoyancy-driven effects, respectively. 展开更多
关键词 Component Nanofluids Mixed Convection Heat Transfer Lid-Driven Cavity Parallel Flow Assumption Finite Volume Method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部