In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrat...In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrate, and the power confinement factor. The dispersion relations and the power confinement factor were numerically solved for a given set of parameters: allowed frequency range;core’s thicknesses;and TEm mode order. We found that the real part of the effective refractive index decreased with thickness and frequency increase. Moreover, the imaginary part (extinction coefficient) of the effective refractive index has very small values for all thickness in the frequency ranges, which means the waveguide structure is transparent for the used frequencies. The waveguide structure offers good guiding power for all thickness in the frequency range with low power attenuation. The real part of the effective refractive index increases with the increase of mode order, and the power confinement factor decreases with the increase of mode order.展开更多
In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distri...In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distribution function. We studied the electronic transmission properties through this tailored quantum waveguide structure. We have assumed that single free-electron channel is incident on the structure and the scattering of electrons is solely from the geometric nature of the problem. We have used the transfer matrix method to study the electron transmission. Coherent Tunneling is achieved through this structure, which is well-defined allowed conduction bands. The electronic conductance spectrum depends on the number of the Dirac delta function potential in the quantum wire. When the number of Dirac delta function potentials in the structure and their strengths are increased, both well defined conductance bands and sharper and narrower forbidden bands are formed. This novel structure has a good defect tolerance. The structure tolerates strength defect and tolerates position defect for the central Dirac delta function in the Gaussian distribution.展开更多
文摘In this work, we derived the modal dispersion relation for TEm modes for a symmetric slab waveguide constructed from SiO2 dielectric guiding core material with lossy left-handed material (LHM) as cladding and substrate, and the power confinement factor. The dispersion relations and the power confinement factor were numerically solved for a given set of parameters: allowed frequency range;core’s thicknesses;and TEm mode order. We found that the real part of the effective refractive index decreased with thickness and frequency increase. Moreover, the imaginary part (extinction coefficient) of the effective refractive index has very small values for all thickness in the frequency ranges, which means the waveguide structure is transparent for the used frequencies. The waveguide structure offers good guiding power for all thickness in the frequency range with low power attenuation. The real part of the effective refractive index increases with the increase of mode order, and the power confinement factor decreases with the increase of mode order.
文摘In this paper, we propose a novel structure of quantum waveguide. In this structure we tailored the quantum wire by Gaussian Profile. Thus, the Dirac-Delta function potentials are weighted according to Gaussian distribution function. We studied the electronic transmission properties through this tailored quantum waveguide structure. We have assumed that single free-electron channel is incident on the structure and the scattering of electrons is solely from the geometric nature of the problem. We have used the transfer matrix method to study the electron transmission. Coherent Tunneling is achieved through this structure, which is well-defined allowed conduction bands. The electronic conductance spectrum depends on the number of the Dirac delta function potential in the quantum wire. When the number of Dirac delta function potentials in the structure and their strengths are increased, both well defined conductance bands and sharper and narrower forbidden bands are formed. This novel structure has a good defect tolerance. The structure tolerates strength defect and tolerates position defect for the central Dirac delta function in the Gaussian distribution.