The well-known frictional effect related to liquid-liquid two-phaseflow in pipelines can be reduced using drag-reducing additives.In this study,such an effect has been investigated experimentally using a mixture of oil...The well-known frictional effect related to liquid-liquid two-phaseflow in pipelines can be reduced using drag-reducing additives.In this study,such an effect has been investigated experimentally using a mixture of oil and water.Moreover,numerical simulations have been carried out using the COMSOL simulation software.The mea-surements were taken in a horizontal pipe with the length and diameter equal to 3 and 0.125 m,respectively.Moreover,Polyethylene oxide with 150 ppm was exploited to reduce the drag effect while considering different water-to-oil fractions(0.3,0.4,0.5,and 0.7)and a constant totalflow velocity of 2.3 m/s.As made evident by the results,a significant reduction can be obtained in terms of pressure drop,which becomes even more significant as the water to oil fraction is increased.The maximum achieved drag reduction is 70%with a water fraction of 0.7.The results also show that the addition of polymer additives can also have an impact on theflow pattern.Com-parison of experimental and numerically determined pressure drop indicates that the error is smaller than 7%.展开更多
文摘The well-known frictional effect related to liquid-liquid two-phaseflow in pipelines can be reduced using drag-reducing additives.In this study,such an effect has been investigated experimentally using a mixture of oil and water.Moreover,numerical simulations have been carried out using the COMSOL simulation software.The mea-surements were taken in a horizontal pipe with the length and diameter equal to 3 and 0.125 m,respectively.Moreover,Polyethylene oxide with 150 ppm was exploited to reduce the drag effect while considering different water-to-oil fractions(0.3,0.4,0.5,and 0.7)and a constant totalflow velocity of 2.3 m/s.As made evident by the results,a significant reduction can be obtained in terms of pressure drop,which becomes even more significant as the water to oil fraction is increased.The maximum achieved drag reduction is 70%with a water fraction of 0.7.The results also show that the addition of polymer additives can also have an impact on theflow pattern.Com-parison of experimental and numerically determined pressure drop indicates that the error is smaller than 7%.