Poly[2-methoxy-5-(20-ethylhexyloxy)-io-phenylenevinylene] (MEH-PPV), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited b...Poly[2-methoxy-5-(20-ethylhexyloxy)-io-phenylenevinylene] (MEH-PPV), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEH- PPV/PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of M EH-PPV/PCBM composite.展开更多
文摘Poly[2-methoxy-5-(20-ethylhexyloxy)-io-phenylenevinylene] (MEH-PPV), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEH- PPV/PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of M EH-PPV/PCBM composite.