Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities ...Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities and performance of PICs.Recently,the emerging waveguides with bound states in the continuum(BICs)have opened new opportunities for PICs because of their special properties in resonance and radiation.Here,we review the recent progress of PICs composed of waveguides with BICs.First,fundamentals including background physics and design rules of a BIC-based waveguide will be introduced.Next,two types of BIC-based waveguide structures,including shallowly etched dielectric and hybrid waveguides,will be presented.Lastly,the challenges and opportunities of PICs with BICs will be discussed.展开更多
An agarase gene containing 1 302 bp was cloned from Microbulbifer sp. AG1. It encoded a mature protein of 413 amino acids plus a 20-residue signal peptide. The recombinant enzyme without the signal peptide was express...An agarase gene containing 1 302 bp was cloned from Microbulbifer sp. AG1. It encoded a mature protein of 413 amino acids plus a 20-residue signal peptide. The recombinant enzyme without the signal peptide was expressed and purified from Escherichia coli BL21(DE3). When agarose was used as a substrate, the optimal temperature and pH for the enzyme were 60℃ and 7.5, respectively. The recombinant agarase showed excellent thermostability with 67% and 19% of residual activities after incubation at 50℃ and 60℃ for 1 h, respectively.Except SDS, the recombinant agarase had a relatively good resistance against the detected inhibitors, detergents and urea denaturant. Thin layer chromatography analysis and enzyme assay using p-nitrophenyl-α/β-Dgalactopyranoside revealed that the recombinant agarase was a β-agarase that degraded agarose into neoagarotetraose as the main end product. The enzymatic hydrolysis products with different degree of polymerization exhibited the antioxidant activities.展开更多
We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be class...We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.展开更多
Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual map...Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.展开更多
The clinical benefit of combination therapy is significant,but it is not easy to define the mechanism of complexity and diversity.Previous studies illustrate that phillygenin(Phi)binds in the allosteric inhibit pocket...The clinical benefit of combination therapy is significant,but it is not easy to define the mechanism of complexity and diversity.Previous studies illustrate that phillygenin(Phi)binds in the allosteric inhibit pocket of protein kinase B(AKT),and swertiamarin(Swe)acts on the pleckstrin homology(PH)domain of AKT.However,the combined synergistic effect of relieving the inflammatory response has yet to be elucidated.Based on high sensitivity,specificity and fast-responsibility fluorescent sensors,the Förster resonance energy transfer(FRET)technique offers a route to provide clear insights into physiological and pathological processes.In the study,molecular docking,the fluorescent probes of Phi and Swe for FRET were designed and synthesized.FRET analysis shown that Swe and Phi concurrently acted on the PH domain and allosterically inhibited pocket of AKT,respectively.The combination of Swe and Phi significantly increased the heat stability of AKT and decreased protease-induced degeneration.In lipopolysaccharides(LPS)-induced mice and cells,the combination arrested AKT activation,nuclear factor kappa-B(NF-κB)phosphorylation,and the expression of tumor necrosis factor-α(TNF-α),interleukin(IL)-6 and IL-8.In conclusion,FRET revealed Phi and Swe concurrently targeted AKT on different domains and the combination of Phi and Swe enhanced the anti-inflammatory effect.展开更多
We study theoretically and experimentally the acoustic Purcell effect induced by quasi-bound states in the continuum(quasiBICs).A theoretical framework describing the acoustic Purcell effect of a resonant system is de...We study theoretically and experimentally the acoustic Purcell effect induced by quasi-bound states in the continuum(quasiBICs).A theoretical framework describing the acoustic Purcell effect of a resonant system is developed based on the system’s radiative and dissipative factors,which reveals the critical emission condition for achieving optimum Purcell factors.We show that the quasiBICs contribute to highly confined acoustic field and bring about greatly enhanced acoustic emission,leading to strong Purcell effect.Our concept is demonstrated via two coupled resonators supporting a Friedrich-Wintgen quasiBIC,and the theoretical results are validated by the experiments observing emission enhancement of the sound source by nearly two orders of magnitude.Our work bridges the gap between the acoustic Purcell effect and acoustic BICs essential for enhanced wave-matter interaction and acoustic emission,which may contribute to the research of high-intensity sound sources,high-quality-factor acoustic devices and nonlinear acoustics.展开更多
Owing to advanced power electronic and electrical applications developing towards miniaturisation and integration,the thickness-dependent DC breakdown mechanism of epoxy/multiwall-carbon-nanotube nanocomposites is und...Owing to advanced power electronic and electrical applications developing towards miniaturisation and integration,the thickness-dependent DC breakdown mechanism of epoxy/multiwall-carbon-nanotube nanocomposites is under investigation.The results indicate that the breakdown strength of nanocomposites containing 0.05 wt%multiwall-carbon-nanotubes rises by~18%,and the breakdown strength falls exponentially with increasing thickness.To clarify the microscopic mechanism,a simulation model of DC breakdown,including carriers transport and segmental dynamics,is developed,and the accordant simulation results with experimental results indicate that the thickness-dependent DC breakdown of epoxy/multiwall-carbon-nanotube nanocomposites is determined both by segment chain dynamics and charge transport.According to the breakdown model analysis,the effects of multiwall-carbon-nanotube on enhanced breakdown strength are caused by the increased amount of deep traps in the interfacial region,while the influence of thickness is attributed to the enlarged segment chain displacement and electric field distortion as the voltage raising time increases.展开更多
Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, whic...Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, which was mapped to a recombination hotspot on rice chromosome 5. To gain a better understanding of how GW5 controls rice grain width, we conducted fine mapping of this locus and uncovered a 1 212-bp deletion associated with the increased grain width in the rice cultivar Asominori, in comparison with the slender grain rice IR24. In addition, genotyping analyses of 46 rice cultivars revealed that this deletion is highly correlated with the grain-width phenotype, suggesting that the GW5 deletion might have been selected during rice domestication. GW5 encodes a novel nuclear protein of 144 amino acids that is localized to the nucleus. Furthermore, we show that GW5 physically interacts with polyubiquitin in a yeast two-hybrid assay. Together, our results suggest that GW5 represents a major QTL underlying rice width and weight, and that it likely acts in the ubiquitin-proteasome pathway to regulate cell division during seed development. This study provides novel insights into the molecular mechanisms controlling rice grain development and suggests that GW5 could serve as a potential tool for high-yield breeding of crops.展开更多
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.
基金Project supported by the National Key Research and Development Program of China (2021YFB2800404)National Natural Science Foundation of China (62105283)+1 种基金Zhejiang Provincial Natural Science Foundation of China (LDT23F04012F05)Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2021R01001)
文摘Photonic waveguides are the most fundamental element for photonic integrated circuits(PICs).Waveguide properties,such as propagation loss,modal areas,nonlinear coefficients,etc.,directly determine the functionalities and performance of PICs.Recently,the emerging waveguides with bound states in the continuum(BICs)have opened new opportunities for PICs because of their special properties in resonance and radiation.Here,we review the recent progress of PICs composed of waveguides with BICs.First,fundamentals including background physics and design rules of a BIC-based waveguide will be introduced.Next,two types of BIC-based waveguide structures,including shallowly etched dielectric and hybrid waveguides,will be presented.Lastly,the challenges and opportunities of PICs with BICs will be discussed.
基金The Natural Science Foundation of Fujian Province of China under contract No.2016J01162the Program for New Century Excellent Talents in Fujian Province University,China under contract No.B15139
文摘An agarase gene containing 1 302 bp was cloned from Microbulbifer sp. AG1. It encoded a mature protein of 413 amino acids plus a 20-residue signal peptide. The recombinant enzyme without the signal peptide was expressed and purified from Escherichia coli BL21(DE3). When agarose was used as a substrate, the optimal temperature and pH for the enzyme were 60℃ and 7.5, respectively. The recombinant agarase showed excellent thermostability with 67% and 19% of residual activities after incubation at 50℃ and 60℃ for 1 h, respectively.Except SDS, the recombinant agarase had a relatively good resistance against the detected inhibitors, detergents and urea denaturant. Thin layer chromatography analysis and enzyme assay using p-nitrophenyl-α/β-Dgalactopyranoside revealed that the recombinant agarase was a β-agarase that degraded agarose into neoagarotetraose as the main end product. The enzymatic hydrolysis products with different degree of polymerization exhibited the antioxidant activities.
基金the HXMT mission,a project funded by China National Space Administration(CNSA)and the Chinese Academy of Sciences(CAS)supported by the National Key R&D Program of China(2016YFA0400800)the National Natural Science Foundation of China(Grant Nos.11673023,U1838201,U1838115,U1838111,U1838202,11733009 and U1838108)。
文摘We present the observational results from a detailed timing analysis of the black hole candidate EXO 1846-031 during its outburst in 2019 with the observations of Insight-HXMT,NICER and MAXI.This outburst can be classified roughly into four different states.Type-C quasi-periodic oscillations(QPOs)observed by NICER(about 0.1-6 Hz)and Insight-HXMT(about 0.7-8 Hz)are also reported in this work.Meanwhile,we study various physical quantities related to QPO frequency.The QPO rms-frequency relationship in the energy band 1-10 keV indicates that there is a turning pointing in frequency around2 Hz,which is similar to that of GRS 1915+105.A possible hypothesis for the relationship above may be related to the inclination of the source,which may require a high inclination to explain it.The relationships between QPO frequency and QPO rms,hardness,total fractional rms and count rate have also been found in other transient sources,which can indicate that the origin of type-C QPOs is non-thermal.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700400).
文摘Current research on autonomous mobile robots focuses primarily on perceptual accuracy and autonomous performance.In commercial and domestic constructions,concrete,wood,and glass are typically used.Laser and visual mapping or planning algorithms are highly accurate in mapping wood panels and concrete walls.However,indoor and outdoor glass curtain walls may fail to perceive these transparent materials.In this study,a novel indoor glass recognition and map optimization method based on boundary guidance is proposed.First,the status of glass recognition techniques is analyzed comprehensively.Next,a glass image segmentation network based on boundary data guidance and the optimization of a planning map based on depth repair are proposed.Finally,map optimization and path-planning tests are conducted and compared using different algorithms.The results confirm the favorable adaptability of the proposed method to indoor transparent plates and glass curtain walls.Using the proposed method,the recognition accuracy of a public test set increases to 94.1%.After adding the planning map,incorrect coverage redundancies for two test scenes reduce by 59.84%and 55.7%.Herein,a glass recognition and map optimization method is proposed that offers sufficient capacity in perceiving indoor glass materials and recognizing indoor no-entry regions.
基金supported by the National Natural Science Foundation of China(No.81973449).
文摘The clinical benefit of combination therapy is significant,but it is not easy to define the mechanism of complexity and diversity.Previous studies illustrate that phillygenin(Phi)binds in the allosteric inhibit pocket of protein kinase B(AKT),and swertiamarin(Swe)acts on the pleckstrin homology(PH)domain of AKT.However,the combined synergistic effect of relieving the inflammatory response has yet to be elucidated.Based on high sensitivity,specificity and fast-responsibility fluorescent sensors,the Förster resonance energy transfer(FRET)technique offers a route to provide clear insights into physiological and pathological processes.In the study,molecular docking,the fluorescent probes of Phi and Swe for FRET were designed and synthesized.FRET analysis shown that Swe and Phi concurrently acted on the PH domain and allosterically inhibited pocket of AKT,respectively.The combination of Swe and Phi significantly increased the heat stability of AKT and decreased protease-induced degeneration.In lipopolysaccharides(LPS)-induced mice and cells,the combination arrested AKT activation,nuclear factor kappa-B(NF-κB)phosphorylation,and the expression of tumor necrosis factor-α(TNF-α),interleukin(IL)-6 and IL-8.In conclusion,FRET revealed Phi and Swe concurrently targeted AKT on different domains and the combination of Phi and Swe enhanced the anti-inflammatory effect.
基金This work is supported by the National Key R&D Program of China(2020YFA0211400,2020YFA0211402)the National Natural Science Foundation of China(12074286,11774297)+1 种基金the Shanghai Science and Technology Committee(21JC1405600,20ZR1460900)the Research Grants Council of Hong Kong SAR(AoE/P-502/20,15205219and C6013-18G).
文摘We study theoretically and experimentally the acoustic Purcell effect induced by quasi-bound states in the continuum(quasiBICs).A theoretical framework describing the acoustic Purcell effect of a resonant system is developed based on the system’s radiative and dissipative factors,which reveals the critical emission condition for achieving optimum Purcell factors.We show that the quasiBICs contribute to highly confined acoustic field and bring about greatly enhanced acoustic emission,leading to strong Purcell effect.Our concept is demonstrated via two coupled resonators supporting a Friedrich-Wintgen quasiBIC,and the theoretical results are validated by the experiments observing emission enhancement of the sound source by nearly two orders of magnitude.Our work bridges the gap between the acoustic Purcell effect and acoustic BICs essential for enhanced wave-matter interaction and acoustic emission,which may contribute to the research of high-intensity sound sources,high-quality-factor acoustic devices and nonlinear acoustics.
基金Natural Science Foundation of Heilongjiang Province,Grant/Award Number:LH2023E085State Key Laboratory of Electrical Insulation and Power Equipment,Grant/Award Number:EIPE23206+1 种基金National Key Research and Development Program of China,Grant/Award Number:2017YFB0902702National Natural Science Foundation of China,Grant/Award Number:51337008。
文摘Owing to advanced power electronic and electrical applications developing towards miniaturisation and integration,the thickness-dependent DC breakdown mechanism of epoxy/multiwall-carbon-nanotube nanocomposites is under investigation.The results indicate that the breakdown strength of nanocomposites containing 0.05 wt%multiwall-carbon-nanotubes rises by~18%,and the breakdown strength falls exponentially with increasing thickness.To clarify the microscopic mechanism,a simulation model of DC breakdown,including carriers transport and segmental dynamics,is developed,and the accordant simulation results with experimental results indicate that the thickness-dependent DC breakdown of epoxy/multiwall-carbon-nanotube nanocomposites is determined both by segment chain dynamics and charge transport.According to the breakdown model analysis,the effects of multiwall-carbon-nanotube on enhanced breakdown strength are caused by the increased amount of deep traps in the interfacial region,while the influence of thickness is attributed to the enlarged segment chain displacement and electric field distortion as the voltage raising time increases.
文摘Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, which was mapped to a recombination hotspot on rice chromosome 5. To gain a better understanding of how GW5 controls rice grain width, we conducted fine mapping of this locus and uncovered a 1 212-bp deletion associated with the increased grain width in the rice cultivar Asominori, in comparison with the slender grain rice IR24. In addition, genotyping analyses of 46 rice cultivars revealed that this deletion is highly correlated with the grain-width phenotype, suggesting that the GW5 deletion might have been selected during rice domestication. GW5 encodes a novel nuclear protein of 144 amino acids that is localized to the nucleus. Furthermore, we show that GW5 physically interacts with polyubiquitin in a yeast two-hybrid assay. Together, our results suggest that GW5 represents a major QTL underlying rice width and weight, and that it likely acts in the ubiquitin-proteasome pathway to regulate cell division during seed development. This study provides novel insights into the molecular mechanisms controlling rice grain development and suggests that GW5 could serve as a potential tool for high-yield breeding of crops.