A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutua...A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.展开更多
磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素....磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.展开更多
文摘A novel metasurface antenna consisting of 5×5 rectangular patch elements is presented.Thestructure with and without the central element are both analyzed by the Characteristic Mode Theory(CMT).The developed mutually orthogonal principal modes of the optimized periodic patch structure areexcited by a center-feed dipole.A differential feeding network is employed to realize impedance matching.Prototype with profile height of 0.07λ_(0)(λ_(0)is the wavelength in free space at the lowest operatingfrequency)is fabricated and assembled to verify the simulation results.The measured results show that thereflectance coefficient of proposed matesurface antenna is less than-10 dB in the whole operating bandrange from 4.2 GHz to 5.5 GHz,a relative bandwidth of 26.8%is achieved,and the maximummeasured realized gain is more than 9 dBi with a maximum radiation efficiency of 90%.The designprovides a guideline on the application of characteristic modes(CMs)to radiation problems.
文摘磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.