A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direct...A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direction using different carrier frequencies before being projected onto the measured object.After collecting and demodulating the composite fringe,the digital π phase shift is used to remove the DC component of the demodulated fringes,resulting in high-precision Moiré fringes for calculating the wrapped phase.The unwrapping of the high-frequency wrapped phase is guided by the low-frequency phase to further realistically reconstruct the surface of the measured object.When compared with existing single-shot digital Moiré profilometry,DFDM effectively removes the DC component of the fringe and calculates the phase more accurately.展开更多
文摘A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direction using different carrier frequencies before being projected onto the measured object.After collecting and demodulating the composite fringe,the digital π phase shift is used to remove the DC component of the demodulated fringes,resulting in high-precision Moiré fringes for calculating the wrapped phase.The unwrapping of the high-frequency wrapped phase is guided by the low-frequency phase to further realistically reconstruct the surface of the measured object.When compared with existing single-shot digital Moiré profilometry,DFDM effectively removes the DC component of the fringe and calculates the phase more accurately.