The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and...The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and thecontrol-volume method. The composite is composed of tWo plane layers of nonscattering sendtransparent media withthe different thermophysical Properties in each layer. Both boundals surfaces and the internal interface aresemitransparent. The reflections are assUmed diffuse or specular. The transient temperature distributions in thecomposite are Obtained for the combined thermal boundary conditions of incident radiation and convective heat transfer.Under diffuse reflection, the resultS in this paper are separately compared with the steady and transient results ofPrevious work. The comparison shows the reliability and the high calculating accuracy of the formulas derived in thespaper. The Present analysis includes the effeCts of the optical thickness, the conduchon-radiation parameter, the spectralproperty and the renechve mode on the transient temperature distributions.展开更多
文摘The transient coupled radiative and conductive heat transfer in a semitransparent composite under the complexboundary conditidns is investigated by the ray tracing method in combination with Hottel’s zonal method and thecontrol-volume method. The composite is composed of tWo plane layers of nonscattering sendtransparent media withthe different thermophysical Properties in each layer. Both boundals surfaces and the internal interface aresemitransparent. The reflections are assUmed diffuse or specular. The transient temperature distributions in thecomposite are Obtained for the combined thermal boundary conditions of incident radiation and convective heat transfer.Under diffuse reflection, the resultS in this paper are separately compared with the steady and transient results ofPrevious work. The comparison shows the reliability and the high calculating accuracy of the formulas derived in thespaper. The Present analysis includes the effeCts of the optical thickness, the conduchon-radiation parameter, the spectralproperty and the renechve mode on the transient temperature distributions.