"Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end st..."Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono and di-addition were investigated when modifying the alkynefunctionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric?hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21871037, 21674017, andU1508204)
文摘"Thiol-yne" click reaction has already been widely applied in synthesis and modification of new polymer structures or novel materials due to its specific features. However, in most studies, only chain-end strategy was employed when using the di-addition feature of thiol-yne reaction, thus the in-chain di-addition strategy could endow us with a broader space to develop the synthesis of advanced polymers. Therefore, in this paper, the features of in-chain mono and di-addition were investigated when modifying the alkynefunctionalized polymers to prepare grafted polymers via thiol-yne click reaction. The results showed that it is almost impossible to obtain the in-chain di-adducts even under excess feeding of chain-end thiol-functionalized grafts, while only the in-chain mono-adducts could be obtained efficiently. Further researches investigated that the controlled grafting could be encountered when carrying out the thiol-yne click reaction between chain-end alkyne-functionalized polystyrenes and chain-end thiol-functionalized polystyrenes under proper feedings. Therefore, the effect of steric?hindrance might be the primary reason for the alternative grafting via thiol-yne click reaction between in-chain and chain-end alkyne-functionalized polymers.