期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Estimation of the quantity of aeolian saltation sediments blown into the Yellow River from the Ulanbuh Desert,China 被引量:12
1
作者 heqiang du Xian XUE Tao WANG 《Journal of Arid Land》 SCIE CSCD 2014年第2期205-218,共14页
The Ulanbuh Desert borders the upper reach of the Yellow River. Every year, a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Ye... The Ulanbuh Desert borders the upper reach of the Yellow River. Every year, a mass of aeolian sand is blown into the Yellow River by the prevailing wind and the coarse aeolian sand results in serious silting in the Yellow River. To estimate the quantity of aeolian sediments from the Ulanbuh Desert blown into the Yellow River, we simulated the saltation processes of aeolian sediments in the Ulanbuh Desert. Then we used a saltation submodel of the IWEMS (integrated Wind-Erosion Modeling System) and its accompanying RS (Remote Sensing) and GIS (Geographic Information System) modules to estimate the quantity of saltation sediments blown into the Yellow River from the Ulanbuh Desert. We calibrated the saltation submodel by the synchronous observation to wind ve- locity and saltation sediments on several points with different vegetation cover. The vegetation cover, frontal area of vegetation, roughness length, and threshold friction velocity in various regions of the Ulanbuh Desert were obtained using NDVI (Normalized Difference Vegetation Index) data, measured sand-particle sizes, and empirical relation- ships among vegetation cover, sand-particle diameters, and wind velocity. Using these variables along with the observed wind velocities and saltation sediments for the observed points, the saltation model was validated. The model results were shown to be satisfactory (RMSE less than 0.05 and IRel less than 17%). In this study, a subdaily wind-velocity program, WlNDGEN, was developed using this model to simulate hourly wind velocities around the Ulanbuh Desert. By incorporating simulated hourly wind-velocity and wind-direction data, the quantity of saltation sediments blown into the Yellow River was calculated with the saltation submodel. The annual quantity of aeolian sediments blown into the Yellow River from the Ulanbuh Desert was 5.56x106 t from 2001 to 2010, most of which occurred in spring (from March to May); for example, 6.54x10~ tons of aeolian sand were blown into the Yellow River on 25 April, 2010. However, in summer and winter, the saltation process occasionally occurred. This research has supplied some references to prevent blown sand hazards and silting in the Yellow River. 展开更多
关键词 aeolian sand sediments integrated wind-erosion modeling system NDVI WlNDGEN Ulanbuh Desert
下载PDF
Field determination for roughness length above the different non-erodible surfaces
2
作者 heqiang du Tao Wang Xian Xue 《Research in Cold and Arid Regions》 CSCD 2017年第1期67-77,共11页
Non-erodible elements, for its disturbance to the near-surface airflow, have been widely used in arid and semi-arid regions to protect the surface from wind erosion. Roughness length was usually used to evaluate the p... Non-erodible elements, for its disturbance to the near-surface airflow, have been widely used in arid and semi-arid regions to protect the surface from wind erosion. Roughness length was usually used to evaluate the protection effect of non-erodible elements from wind erosion. In this study, the wind profiles above five types of non-erodible surfaces in- eluding gravel,wheat straw checkerboard barriers,cotton stem checkerboard barriers, shrubs, and herbs were measured and analyzed. The wind velocities above these surfaces increased with height approximately in logarithmic functions. The roughness length of different non-erodible surfaces was calculated by the functions of wind profiles. The results reveal that: (1) Roughness length increased with wind velocity in given wind velocity ranges. (2) On vegetative surfaces, wind did not effectively bend the stems. The threshold wind velocity for bending the stems of 汍 erw/w was 4 m/s, 10m/s for Agropyron cristatum, and for Artemisia ordosica, no obvious bending of stems even for wind velocity reaching 12 m/s. (3) Correlation analysis results show that the vegetation's coverage and frontal area affect the roughness length more significantly than the other parameters. (4) The protective results of these non-erodible elements were evaluated. The checkerboard sand barriers made of cotton stem could provide more effective protection than that made of wheat straw. In the same coverage conditions, vegetation could provide more effective protection from wind erosion than gravel, and the blending of different non-erodible elements especially the combination of blending of vegeation and checkerboard sand barriers could provide more effective protection to the surface. 展开更多
关键词 non-erodible elements wind velocity wind erosion protective results
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部