Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, ...Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids, is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses.展开更多
The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cel...The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types, PG E2 has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis, migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC- NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes.展开更多
文摘Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids, is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses.
文摘The reciprocal activating crosstalk between dendritic cells (DCs) and natural killer (NK) cells plays a pivotal role in regulating immune defense against viruses and tumors. The cytokine-producing capacity, Th-cell polarizing ability and chemokine expression, migration and stimulatory functions of DCs are regulated by activated NK cells. Conversely, the innate and effector functions of NK cells require close interactions with activated DCs. Cell membrane-associated molecules and soluble mediators, including cytokines and prostaglandins (PGs), contribute to the bidirectional crosstalk between DCs and NK cells. One of the most well-known and well-studied PGs is PGE2. Produced by many cell types, PG E2 has been shown to affect various aspects of the immune and inflammatory responses by acting on all components of the immune system. There is emerging evidence that PGE2 plays crucial roles in DC and NK cell biology. Several studies have shown that DCs are not only a source of PGE2, but also a target of its immunomodulatory action in normal immune response and during immune disorders. Although NK cells appear to be unable to produce PGE2, they are described as powerful PGE2-responding cells, as they express all PGE2 E-prostanoid (EP) receptors. Several NK cell functions (lysis, migration, proliferation, cytokine production) are influenced by PGE2. This review highlights the effects of PGE2 on DC- NK cell crosstalk and its subsequent impact on immune regulations in normal and immunopathological processes.