New information and communication technologies(ICT)are being applied in various industries to upgrade the value of the major service items.Moreover,data collection,storage,processing,and security applications have led...New information and communication technologies(ICT)are being applied in various industries to upgrade the value of the major service items.Moreover,data collection,storage,processing,and security applications have led to the creation of an interrelated ICT environment in which one industry can directly influence the other.This is called the“internet of blended environ-ments”(IoBE),as it is an interrelated data environment based on internet-of-things collection activities.In this environment,security incidents may increase as size and interconnectivity of attackable operations grow.Consequently,pre-emptive responses to combined security threats are needed to securely utilize IoBE across industries.For example,the medical industry has more stringent information protection measures than other industries.Consequently,it has become a major target of attackers,as more clinician–patient interactions occur over the internet owing to COVID-19.Therefore,this study aims to acquire security for IoBE while focusing on the medical industry.Among the various types of medical ICT services,this study analyzes dataflow and potential security threats from the e-prescription lifecycle perspective,which is highly utilized,strongly data-centric,and has numerous security issues.Based on our analysis,we propose a secure authentication and data-sharing scheme.展开更多
The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur c...The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs.展开更多
Lithium-sulfur batteries(LSBs)have emerged as promising power sources for high-performance devices such as electric vehicles.However,the poor energy density of LSBs owing to polysulfide shuttling and passivation has l...Lithium-sulfur batteries(LSBs)have emerged as promising power sources for high-performance devices such as electric vehicles.However,the poor energy density of LSBs owing to polysulfide shuttling and passivation has limited their further market penetration.To mitigate this challenge,two-dimensional(2D)siloxene(2DSi),a Si-based analog of graphene,is utilized as an additive for sulfur cathodes.The 2DSi is fabricated on a large scale by simple solvent extraction of calcium disilicide to form a thin-layered structure of Si planes functionalized with vertically aligned hydroxyl groups in the 2DSi.The stoichiometric reaction of 2DSi with polysulfides generates a thiosulfate redox mediator,secures the intercalation pathway,and reveals Lewis acidic sites within the siloxene galleries.The 2DSi utilizes the corresponding in-situ-formed electrocatalyst,the 2D confinement effect of the layered structure,and the surface affinity based on Lewis acid-base interaction to improve the energy density of 2DSi-based LSB cells.Combined with the commercial carbon-based current collector,2DSi-based LSB cells achieve a volumetric energy density of 612 Wh Lcell^(−1) at 1 mA cm^(−2) with minor degradation of 0.17%per cycle,which rivals those of state-of-the-art LSBs.This study presents a method for the industrial production of high-energy-dense LSBs.展开更多
Numerous industries,especially the medical industry,are likely to exhibit significant developments in the future.Ever since the announcement of the precision medicine initiative by the United States in 2015,interest i...Numerous industries,especially the medical industry,are likely to exhibit significant developments in the future.Ever since the announcement of the precision medicine initiative by the United States in 2015,interest in the field has considerably increased.The techniques of precision medicine are employed to provide optimal treatment and medical services to patients,in addition to the prevention and management of diseases via the collection and analysis of big data related to their individual genetic characteristics,occupation,living environment,and dietary habits.As this involves the accumulation and utilization of sensitive information,such as patient history,DNA,and personal details,its implementation is difficult if the data are inaccurate,exposed,or forged,and there is also a concern for privacy,as massive amount of data are collected;hence,ensuring the security of information is essential.Therefore,it is necessary to develop methods of securely sharing sensitive data for the establishment of a precision medicine system.An authentication and data sharing scheme is presented in this study on the basis of an analysis of sensitive data.The proposed scheme securely shares sensitive data of each entity in the precision medicine system according to its architecture and data flow.展开更多
In a performance test, the standards for assessing its test results are not sufficiently determined due to the lack of a well-structured test developing methods which are found in a functionality test. By extending th...In a performance test, the standards for assessing its test results are not sufficiently determined due to the lack of a well-structured test developing methods which are found in a functionality test. By extending the established workflow structure, this approach will concentrate on tradeoffs within T-workflow and further develop tests based on T-workflow. The monitoring and tuning point have also been investigated to understand the validity and performance of software. Finally through a case study, it has been shown that better assessment of software performance can be obtained with the suggested tests developed based on T-workflow and by locating its monitoring point and tuning point.展开更多
Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by p...Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT,No.2021R1A2C2011391).
文摘New information and communication technologies(ICT)are being applied in various industries to upgrade the value of the major service items.Moreover,data collection,storage,processing,and security applications have led to the creation of an interrelated ICT environment in which one industry can directly influence the other.This is called the“internet of blended environ-ments”(IoBE),as it is an interrelated data environment based on internet-of-things collection activities.In this environment,security incidents may increase as size and interconnectivity of attackable operations grow.Consequently,pre-emptive responses to combined security threats are needed to securely utilize IoBE across industries.For example,the medical industry has more stringent information protection measures than other industries.Consequently,it has become a major target of attackers,as more clinician–patient interactions occur over the internet owing to COVID-19.Therefore,this study aims to acquire security for IoBE while focusing on the medical industry.Among the various types of medical ICT services,this study analyzes dataflow and potential security threats from the e-prescription lifecycle perspective,which is highly utilized,strongly data-centric,and has numerous security issues.Based on our analysis,we propose a secure authentication and data-sharing scheme.
基金the R&D Convergence Program of NST(National Research Council of Science&Technology)of the Republic of Korea(CAP-15-02-KBSI)a National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(No.2019R1C1C1007745)a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Ministry of Science,ICT&Future Planning)(No.2019R1A4A2001527).
文摘The development of sulfur cathodes with high areal capacity and high energy density is crucial for the practical application of lithium-sulfur batteries(LSBs).LSBs can be built by employing(ultra)high-loading sulfur cathodes,which have rarely been realized due to massive passivation and shuttling.Herein,microspheres of a carbon-carbon nitride composite(C@CN)with large mesopores are fabricated via molecular cooperative assembly.Using the C@CN-based electrodes,the effects of the large mesopores and N-functional groups on the electrochemical behavior of sulfur in LSB cells are thoroughly investigated under ultrahigh sulfur-loading conditions(>15 mgS cm^(-2)).Furthermore,for high-energy-density LSBs,the C@CN powders are pelletized into a thick free-standing electrode(thickness:500^m;diameter:11 mm)via a simple briquette process;here,the total amount of energy stored by the LSB cells is 39 mWh,corresponding to a volumetric energy density of 440 Wh L-1 with an areal capacity of 24.9 and 17.5 mAh cm^(-2) at 0.47 and 4.7 mA cm^(-2),respectively(at 24mgS cm^(-2)).These results have significantly surpassed most recent records due to the synergy among the large mesopores,(poly)sulfide-philic surfaces,and thick electrodes.The developed strategy with its potential for scale-up successfully fills the gap between laboratory-scale cells and practical cells without sacrificing the high areal capacity and high energy density,providing a solid foundation for the development of practical LSBs.
基金supported by the R&D Convergence Program of NST(National Research Council of Science&Technology)of the Republic of Korea(CAP-15-02-KBSI)a National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(no.2019R1C1C1007745)a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Ministry of Science,ICT&Future Planning)(no.2019R1A4A2001527).
文摘Lithium-sulfur batteries(LSBs)have emerged as promising power sources for high-performance devices such as electric vehicles.However,the poor energy density of LSBs owing to polysulfide shuttling and passivation has limited their further market penetration.To mitigate this challenge,two-dimensional(2D)siloxene(2DSi),a Si-based analog of graphene,is utilized as an additive for sulfur cathodes.The 2DSi is fabricated on a large scale by simple solvent extraction of calcium disilicide to form a thin-layered structure of Si planes functionalized with vertically aligned hydroxyl groups in the 2DSi.The stoichiometric reaction of 2DSi with polysulfides generates a thiosulfate redox mediator,secures the intercalation pathway,and reveals Lewis acidic sites within the siloxene galleries.The 2DSi utilizes the corresponding in-situ-formed electrocatalyst,the 2D confinement effect of the layered structure,and the surface affinity based on Lewis acid-base interaction to improve the energy density of 2DSi-based LSB cells.Combined with the commercial carbon-based current collector,2DSi-based LSB cells achieve a volumetric energy density of 612 Wh Lcell^(−1) at 1 mA cm^(−2) with minor degradation of 0.17%per cycle,which rivals those of state-of-the-art LSBs.This study presents a method for the industrial production of high-energy-dense LSBs.
文摘Numerous industries,especially the medical industry,are likely to exhibit significant developments in the future.Ever since the announcement of the precision medicine initiative by the United States in 2015,interest in the field has considerably increased.The techniques of precision medicine are employed to provide optimal treatment and medical services to patients,in addition to the prevention and management of diseases via the collection and analysis of big data related to their individual genetic characteristics,occupation,living environment,and dietary habits.As this involves the accumulation and utilization of sensitive information,such as patient history,DNA,and personal details,its implementation is difficult if the data are inaccurate,exposed,or forged,and there is also a concern for privacy,as massive amount of data are collected;hence,ensuring the security of information is essential.Therefore,it is necessary to develop methods of securely sharing sensitive data for the establishment of a precision medicine system.An authentication and data sharing scheme is presented in this study on the basis of an analysis of sensitive data.The proposed scheme securely shares sensitive data of each entity in the precision medicine system according to its architecture and data flow.
文摘In a performance test, the standards for assessing its test results are not sufficiently determined due to the lack of a well-structured test developing methods which are found in a functionality test. By extending the established workflow structure, this approach will concentrate on tradeoffs within T-workflow and further develop tests based on T-workflow. The monitoring and tuning point have also been investigated to understand the validity and performance of software. Finally through a case study, it has been shown that better assessment of software performance can be obtained with the suggested tests developed based on T-workflow and by locating its monitoring point and tuning point.
文摘Bismuthinite (Bi2S3)nanostructures were prepared by a hydrothermal method with sodium ethylenediamine- tetraacetate (EDTA-Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA-Na2. The altered morphology was caused by the capping effect of EDTA-Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA-Na2/Bi3+ molar ratio= 1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA-Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron mi- croscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.