期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study of borohydride ionic liquids as hydrogen storage materials 被引量:3
1
作者 Loris Lombardo heena yang Andreas Züttel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期17-21,共5页
Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a... Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH4]) starts below 100℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer. 展开更多
关键词 HYDROGEN storage IONIC liquid SODIUM BOROHYDRIDE THERMOLYSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部