期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基线乙型肝炎核心抗体定量与慢加急性肝衰竭患者预后的相关性 被引量:4
1
作者 杜合娟 周学士 +4 位作者 戴亚萍 苏婷婷 过小叶 张英 邱源旺 《中华检验医学杂志》 CAS CSCD 北大核心 2023年第1期45-51,共7页
目的分析基线乙型肝炎核心抗体定量(qHBcAb)与乙型肝炎病毒(HBV)相关慢加急性肝衰竭(HBV-ACLF)患者预后的相关性,及其对HBV-ACLF预后的预测价值。方法纳入2019年7月1日至2021年12月30日无锡市第五人民医院收治的HBV-ACLF患者91例(HBV-A... 目的分析基线乙型肝炎核心抗体定量(qHBcAb)与乙型肝炎病毒(HBV)相关慢加急性肝衰竭(HBV-ACLF)患者预后的相关性,及其对HBV-ACLF预后的预测价值。方法纳入2019年7月1日至2021年12月30日无锡市第五人民医院收治的HBV-ACLF患者91例(HBV-ACLF组),并纳入慢性乙型肝炎(CHB)患者50例(CHB组)及慢性HBV携带状态患者50例(HBV携带组)为对照,收集qHBcAb、血常规、生化、凝血功能、乙型肝炎表面抗原(HBsAg)、乙型肝炎e抗原(HBeAg)、HBV DNA等基线资料,进行回顾性分析。将qHBcAb、HBsAg和HBV DNA数据进行对数转换。采用Cox多因素回归分析qHBcAb水平与生存结局的相关性;随访90 d,用Kaplan-Meier法进行生存分析;用受试者工作特征(ROC)曲线评价qHBcAb对HBV-ACLF患者预后的预测价值。结果HBV-ACLF组基线qHBcAb水平为(4.83±0.42)IU/ml,高于CHB组[(4.59±0.54)IU/ml]及HBV携带组[(3.86±0.74)IU/ml](P均<0.05)。随访90 d后,HBV-ACLF组生存46例(50.5%),死亡45例(49.5%)。生存患者基线qHBcAb水平高于死亡患者[(4.93±0.22)IU/ml比(4.70±0.52)IU/ml,P<0.01]。生存和死亡患者在甲胎蛋白、国际标准化比值、凝血酶原时间、抗凝血酶Ⅲ活性、血小板计数、终末期肝病模型评分、是否合并肝性脑病的差异均有统计学意义(P均<0.05)。Cox多因素回归分析显示基线qHBcAb是患者90 d生存结局的独立影响因素(HR=0.027,95%CI 0.001~0.696,P<0.05)。基线qHBcAb水平预测肝衰竭患者90 d生存结局的ROC曲线下面积为0.639(95%CI 0.525~0.752,P<0.05),截断值为4.89 IU/ml。基线qHBcAb≥4.89 IU/ml患者累积生存率高于基线qHBcAb<4.89 IU/ml患者(P<0.05)。结论基线qHBcAb水平与HBV-ACLF患者的预后相关,可能作为预测HBV-ACLF临床结局的一种新型生物学标志物;当qHBcAb<4.89 IU/ml时,患者病死率较高。 展开更多
关键词 乙型肝炎病毒 乙型肝炎核心抗体 慢加急性肝衰竭 预后
原文传递
Automated Chinese medicinal plants classification based on machine learning using leaf morpho-colorimetry,fractal dimension and visible/near infrared spectroscopy 被引量:3
2
作者 Jinru Xue Sigfredo Fuentes +4 位作者 Carlos Poblete-Echeverria Claudia Gonzalez Viejo Eden Tongson hejuan du Baofeng Su 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第2期123-131,共9页
The identification of Chinese medicinal plants was conducted to rely on ampelographic manual assessment by experts.More recently,machine learning algorithms for pattern recognition have been successfully applied to le... The identification of Chinese medicinal plants was conducted to rely on ampelographic manual assessment by experts.More recently,machine learning algorithms for pattern recognition have been successfully applied to leaf recognition in other plant species.These new tools make the classification of Chinese medicinal plants easier,more efficient and cost effective.This study showed comparative results between machine learning models obtained from two methods:i)a morpho-colorimetric method and ii)a visible(VIS)/Near Infrared(NIR)spectral analysis from sampled leaves of 20 different Chinese medicinal plants.Specifically,the automated image analysis and VIS/NIR spectral based parameters obtained from leaves were used separately as inputs to construct customized artificial neural network(ANN)models.Results showed that the ANN model developed using the morpho-colorimetric parameters as inputs(Model A)had an accuracy of 98.3%in the classification of leaves for the 20 medicinal plants studied.In the case of the model based on spectral data from leaves(Model B),the ANN model obtained using the averaged VIS/NIR spectra per leaf as inputs showed 92.5%accuracy for the classification of all medicinal plants used.Model A has the advantage of being cost effective,requiring only a normal document scanner as measuring instrument.This method can be adapted for non-destructive assessment of leaves in-situ by using portable wireless scanners.Model B combines the fast,non-destructive advantages of VIS/NIR spectroscopy,which can be used for rapid and non-invasive identification of Chinese medicinal plants and other applications by analyzing specific light spectra overtones from leaves to assess concentration of pigments such as chlorophyll,anthocyanins and others that are related active compounds from the medicinal plants. 展开更多
关键词 ampelography computer vision artificial neural networks pattern recognition Chinese medicinal plants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部