The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal for...The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal forming processes.It has been found that these tribological conditions vary spatially and historically with process parameters and contact conditions.These time-dependent tribological behaviours are also known as transient tribological phenomena,which are widely observed during forming processes and many other manufacturing application scenarios.However,constant friction values are usually assigned to represent complex and dynamic interfacial conditions,which would introduce deviations in the relevant predictions.In this paper,transient tribological phenomena and the contemporary understanding of the interaction between friction and wear are reviewed,and it has been found that these phenomena are induced by the transitions of friction mechanisms and highly dependent on complex loading conditions at the interface.Friction modelling techniques for transient behaviours for metal forming applications are also reviewed.To accurately describe the evolutionary friction values and corresponding wear during forming,the advanced interactive friction modelling has been established for different application scenarios,including lubricated condition,dry sliding condition(metal-on-metal contact),and coated system.展开更多
Coating is an effective way to reduce friction and wear and to improve the contact-fatigue lives of gear components, which further guarantees a longer service life and better reliability of industrial machinery. The f...Coating is an effective way to reduce friction and wear and to improve the contact-fatigue lives of gear components, which further guarantees a longer service life and better reliability of industrial machinery. The fact that the influence coefficient linking the tractions and stress components could not be expressed explicitly increases the difficulty of coated solids contact analysis. The complicated tribological behavior between tooth surfaces influenced by lubrication and surface roughness further adds difficulty to the coated gear pair contact problems. A numerical elastohydrodynamic lubricated(EHL) contact model of a coated gear pair is proposed by considering the coupled effects of gear kinematics, coating properties, lubrication, and surface roughness. The frequency response function and the discrete convolute, fast Fourier transformation(DC-FFT) method are combined to calculate the surface deformation and the subsurface stress fields at each meshing position along the line of action(LOA). The Ree-Eyring fluid is assumed to incorporate the non-Newtonian effect, which is represented in the generalized Reynolds equation. Influences of the ratio between the Young's modulus of the coating and the substrate on the contact performance, such as pressure, film thickness, tooth friction coefficient, and subsurface stress field, are studied. The effect of the root mean square(RMS) value of the tooth surface roughness is studied by introducing the roughness data, deterministically measured by an optical profiler.展开更多
Contact fatigue issues become more and more crucial in gear industry as they significantly affect the reliability and service life of associated mechanical systems such as wind turbine gearboxes.The contact fatigue be...Contact fatigue issues become more and more crucial in gear industry as they significantly affect the reliability and service life of associated mechanical systems such as wind turbine gearboxes.The contact fatigue behavior is mostly determined by the mechanical properties of materials and stress fields near the contact area,which is further influenced by the lubrication and surface roughness due to pressure fluctuations.In this study,a numerical model incorporating the lubrication state,tooth surface roughness,residual stress,and mechanical properties of the material is developed to determine the contact fatigue behavior of a megawatt level wind turbine carburized gear.The variations of the hardness and residual stress along the depth were characterized by the Vickers hardness measurement and X-ray diffraction test,respectively.The elastohydrodynamic lubrication theory was applied to predict the contact pressure distribution,highlighting the influence of the surface roughness that stemed from the original measurement through an optical profiler.The stress histories of the studied material points during a complete contact loading cycle were fast calculated using the discreteconcrete fast Fourier transformation(DC-FFT)method.Modified Dang Van diagrams under different working conditions were determined to estimate the contact fatigue failure risk.The effect of the root mean square(RMS)value of the surface roughness on the failure risk at critical material points were discussed in detail.Results revealed that the surface roughness significantly increases the contact fatigue failure risk within a shallow area,and the maximum risk appears near the surface.展开更多
Erratum to Friction(2019)https://doi.org/10.1007/s40544-019-0277-3 The article“Study on contact fatigue of a wind turbine gear pair considering surface roughness”,written by Heli LIU,Huaiju LIU,Caichao ZHU,Zhangdong...Erratum to Friction(2019)https://doi.org/10.1007/s40544-019-0277-3 The article“Study on contact fatigue of a wind turbine gear pair considering surface roughness”,written by Heli LIU,Huaiju LIU,Caichao ZHU,Zhangdong SUN,Houyi BAI,was erroneously originally published online without open access.After online first publication this was corrected and the article is now an open access publication.The article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/).展开更多
基金supported by SmartForming Research Base,Imperial College London,UK.
文摘The accurate representation of tribological boundary conditions at the tool–workpiece interface is crucial for analysis and optimization of formability,material flow,and surface quality of components during metal forming processes.It has been found that these tribological conditions vary spatially and historically with process parameters and contact conditions.These time-dependent tribological behaviours are also known as transient tribological phenomena,which are widely observed during forming processes and many other manufacturing application scenarios.However,constant friction values are usually assigned to represent complex and dynamic interfacial conditions,which would introduce deviations in the relevant predictions.In this paper,transient tribological phenomena and the contemporary understanding of the interaction between friction and wear are reviewed,and it has been found that these phenomena are induced by the transitions of friction mechanisms and highly dependent on complex loading conditions at the interface.Friction modelling techniques for transient behaviours for metal forming applications are also reviewed.To accurately describe the evolutionary friction values and corresponding wear during forming,the advanced interactive friction modelling has been established for different application scenarios,including lubricated condition,dry sliding condition(metal-on-metal contact),and coated system.
基金supported by the National Natural Science Foundation of China (Nos.51775060,51535012,and 51575061)
文摘Coating is an effective way to reduce friction and wear and to improve the contact-fatigue lives of gear components, which further guarantees a longer service life and better reliability of industrial machinery. The fact that the influence coefficient linking the tractions and stress components could not be expressed explicitly increases the difficulty of coated solids contact analysis. The complicated tribological behavior between tooth surfaces influenced by lubrication and surface roughness further adds difficulty to the coated gear pair contact problems. A numerical elastohydrodynamic lubricated(EHL) contact model of a coated gear pair is proposed by considering the coupled effects of gear kinematics, coating properties, lubrication, and surface roughness. The frequency response function and the discrete convolute, fast Fourier transformation(DC-FFT) method are combined to calculate the surface deformation and the subsurface stress fields at each meshing position along the line of action(LOA). The Ree-Eyring fluid is assumed to incorporate the non-Newtonian effect, which is represented in the generalized Reynolds equation. Influences of the ratio between the Young's modulus of the coating and the substrate on the contact performance, such as pressure, film thickness, tooth friction coefficient, and subsurface stress field, are studied. The effect of the root mean square(RMS) value of the tooth surface roughness is studied by introducing the roughness data, deterministically measured by an optical profiler.
基金The work was supported by the National Natural Science Foundation of China(Nos.U1864210,51775060,and 51705043)Chongqing Research Program on Technology Innovation and Application Demonstration(No.cstc2018jszx-cyzdX0053).
文摘Contact fatigue issues become more and more crucial in gear industry as they significantly affect the reliability and service life of associated mechanical systems such as wind turbine gearboxes.The contact fatigue behavior is mostly determined by the mechanical properties of materials and stress fields near the contact area,which is further influenced by the lubrication and surface roughness due to pressure fluctuations.In this study,a numerical model incorporating the lubrication state,tooth surface roughness,residual stress,and mechanical properties of the material is developed to determine the contact fatigue behavior of a megawatt level wind turbine carburized gear.The variations of the hardness and residual stress along the depth were characterized by the Vickers hardness measurement and X-ray diffraction test,respectively.The elastohydrodynamic lubrication theory was applied to predict the contact pressure distribution,highlighting the influence of the surface roughness that stemed from the original measurement through an optical profiler.The stress histories of the studied material points during a complete contact loading cycle were fast calculated using the discreteconcrete fast Fourier transformation(DC-FFT)method.Modified Dang Van diagrams under different working conditions were determined to estimate the contact fatigue failure risk.The effect of the root mean square(RMS)value of the surface roughness on the failure risk at critical material points were discussed in detail.Results revealed that the surface roughness significantly increases the contact fatigue failure risk within a shallow area,and the maximum risk appears near the surface.
文摘Erratum to Friction(2019)https://doi.org/10.1007/s40544-019-0277-3 The article“Study on contact fatigue of a wind turbine gear pair considering surface roughness”,written by Heli LIU,Huaiju LIU,Caichao ZHU,Zhangdong SUN,Houyi BAI,was erroneously originally published online without open access.After online first publication this was corrected and the article is now an open access publication.The article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/).