We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap...One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new ...BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.展开更多
The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to...The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines.In this work,we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain.The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations,which can be performed successively to reduce the microwave crosstalk by two to three orders.The qubit chain with microwave driving is governed by one-dimensional(1D)Bose-Hubbard model in transverse field,which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states.Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.展开更多
AIM: To observe different histomorphologic changes of ulcerative colitis (UC) rats that were treated with four regulating-intestine prescriptions (FRIP), to investigate the curative effects of FRIP and to analyze thei...AIM: To observe different histomorphologic changes of ulcerative colitis (UC) rats that were treated with four regulating-intestine prescriptions (FRIP), to investigate the curative effects of FRIP and to analyze their treatment mechanism.METHODS: The UC rat model was made by the method of 2,4-dinitro chloro benzene (DNCB) immunity and acetic acid local enema. Ninety-eight SD rats were randomly divided into seven groups, namely, the normal control group, model group, salicylazosulfapyridine (SASP) group,Wumeiwan (WMW) group, Baitouwengtang (BTWT) group,Senglingbaishusan (SLBSS) group, and Tongxieyaofang (TXYF) group. Each group had 14 rats (with equal ratio of male and female). The six animal model groups of UC-SASP, TXYF, WMW, BTWT, SLBSS, TXYF-were treated by distilled water except the normal control group. Changes of the rat's general conditions after treatment were respectively observed, the colon tissue damage scores were given out, the pathology of colonic mucosa and changes of ultrastructure were analyzed.RESULTS: Different pathological changes on histology were shown after treatment by FRIP. The colon tissue damage score in model group was higher than that of FRIP groups and SASP group (q = 4.59, 4.77, P<0.05 or q = 5.48,6.25, 5.97, P<0.01). The scores of WMW group, BTWT group and SLBSS group were lower than that of SASP (q = 4.13, P<0.05 or q = 5.31, 5.12, P<0.01). There was no remarkable difference between the damage score of TXYF group and SASP group (q = 3.75, P>0.05). In addition, some apoptosis cells were found in the pathologic control group.CONCLUSION: The model made with DNCB and acetic acid was successful, and FRIP had better curative effect and WMW was the best curative effect, BTW, SLBSS and TXYF were similar to SASP, and we discovered that apoptosis was possibly related to UC.展开更多
·AIM:To report a case which keratitis is the first clinical manifestation of COVID-19 that occurred 3 d earlier than the common COVID-19 symptoms.·METHODS:Regular slit lamp examination,corneal scraping test,...·AIM:To report a case which keratitis is the first clinical manifestation of COVID-19 that occurred 3 d earlier than the common COVID-19 symptoms.·METHODS:Regular slit lamp examination,corneal scraping test,and chest computed tomography(CT)were performed for patients with COVID-19 infection.The ophthalmologic treatment included ganciclovir eye drop(50 mglmL,6 times/d).The treatment for diarrhea included Guifu Lizhong pills(TID).The antiviral therapy consisted of oseltamivir(75 mg capsule Q12 H);therapy preventing bacterial infection consisted of azithromycin(250 mg tablet QD)and moxifloxacin(0.4 g tablet Q12 H);and therapy for cough relief and fever prevention consisted of Chinese herbal decoction.·RESULTS:A 35-year-old male suddenly suffered pain,photophobia,and tears in his right eye for one day without systemic COVID-19 symptoms.Patient was diagnosed with keratitis,which was seemingly different from common keratitis.Ganciclovir eye drop was initiated.The corneal scraping test for COVID-19 was positive.The chest CT images were abnormal confirming the diagnosis of COVID-19 infection.The antiviral and antibacterial therapies were initiated.Chinese herbal therapy was used for cough relief and fever prevention.After roughly two weeks,patient recovered from COVID-19.·CONCLUSION:A new type of keratitis,atypical keratitis,is a clinical manifestation of COVID-19,and this clinical manifestation could appear 3 d earlier than fever and cough.The earlier a COVID-19 clinical manifestation is identified,the earlier can a patient be directed to stay at home,and significantly fewer people would be infected.展开更多
We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the r...We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.展开更多
With the development of quantum information processing, multipartite entanglement measures are needed in many cases. However, there are still no complete orthogonal genuine multipartite entanglement(GME) bases availab...With the development of quantum information processing, multipartite entanglement measures are needed in many cases. However, there are still no complete orthogonal genuine multipartite entanglement(GME) bases available as Bell states to bipartite systems. To achieve this goal, we find a method to construct complete orthogonal GME states, and we exclude many equivalent states by leveraging the group theory. We also provide the case of a 3-order 3-dimensional Hilbert space as an example and study the application of general results in the dense coding scheme as an application. Moreover, we discuss some open questions and believe that this work will enlighten extensive studies in this field.展开更多
In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next yea...In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.展开更多
We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The a...We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameterΦ(to be estimated)assumed as uniformly distributed between 0 and 2πwhile fixed in each estimation.One estimation ofΦcan be produced with every two magnetic susceptibility data measured along the two axes respectively,which has an imprecision scaling(1.43±0.02)/N^(0.687±0.003)with respect to the number N of the atomic spins.The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.展开更多
The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the...The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearestneighbor(NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.展开更多
The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a ...The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence.In addition,the strong superadditive deficit of rela.tive entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord(GQD)does not increase under the discarding of subsystems.Using the Monte Carlo method,it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances.The bipartite measurement-dependent GQD does not increase under the discarding of subsystems.The multipartite situation is also discussed in detail.展开更多
Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implement...Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics.展开更多
We investigate the nonlocal advantage of quantum coherence(NAQC)and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence.Solutions of this decoherence model for the ini...We investigate the nonlocal advantage of quantum coherence(NAQC)and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence.Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained,based on which we calculate the NAQC and entanglement.In the weak region of magnetic field,the NAQC behaves as a damped oscillation with the time evolves,while the entanglement decays exponentially(behaves as a damped oscillation)for the spin-1/2(spin-1)case.Moreover,the decay of both the NAQC and entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some decoherence-rate-determined optimal values.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金the valuable discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.92265207 and T2121001)Beijing Natural Science Foundation(Grant No.Z200009).
文摘One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
基金Supported by the National Natural Science Foundation of China,No.81774093,No.81904009,No.81974546 and No.82174182Key R&D Project of Hubei Province,No.2020BCB001.
文摘BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.
基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant No.11874063),the National Natural Science Foundation of China(Grant No.11890704)+3 种基金the National Natural Science Foundation of China(Grant Nos.11934018 and T2121001)the Natural Science Foundation of Beijing(Grant No.Z190012)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)Beijing Natural Science Foundation(Grant No.Z200009)。
文摘The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines.In this work,we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain.The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations,which can be performed successively to reduce the microwave crosstalk by two to three orders.The qubit chain with microwave driving is governed by one-dimensional(1D)Bose-Hubbard model in transverse field,which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states.Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.
基金Supported by the Hubei Provincial Department of Education, No.99Z014
文摘AIM: To observe different histomorphologic changes of ulcerative colitis (UC) rats that were treated with four regulating-intestine prescriptions (FRIP), to investigate the curative effects of FRIP and to analyze their treatment mechanism.METHODS: The UC rat model was made by the method of 2,4-dinitro chloro benzene (DNCB) immunity and acetic acid local enema. Ninety-eight SD rats were randomly divided into seven groups, namely, the normal control group, model group, salicylazosulfapyridine (SASP) group,Wumeiwan (WMW) group, Baitouwengtang (BTWT) group,Senglingbaishusan (SLBSS) group, and Tongxieyaofang (TXYF) group. Each group had 14 rats (with equal ratio of male and female). The six animal model groups of UC-SASP, TXYF, WMW, BTWT, SLBSS, TXYF-were treated by distilled water except the normal control group. Changes of the rat's general conditions after treatment were respectively observed, the colon tissue damage scores were given out, the pathology of colonic mucosa and changes of ultrastructure were analyzed.RESULTS: Different pathological changes on histology were shown after treatment by FRIP. The colon tissue damage score in model group was higher than that of FRIP groups and SASP group (q = 4.59, 4.77, P<0.05 or q = 5.48,6.25, 5.97, P<0.01). The scores of WMW group, BTWT group and SLBSS group were lower than that of SASP (q = 4.13, P<0.05 or q = 5.31, 5.12, P<0.01). There was no remarkable difference between the damage score of TXYF group and SASP group (q = 3.75, P>0.05). In addition, some apoptosis cells were found in the pathologic control group.CONCLUSION: The model made with DNCB and acetic acid was successful, and FRIP had better curative effect and WMW was the best curative effect, BTW, SLBSS and TXYF were similar to SASP, and we discovered that apoptosis was possibly related to UC.
基金Supported by the Tongji-Rockcheck Life Science and Medicine Research Center(No.202014)。
文摘·AIM:To report a case which keratitis is the first clinical manifestation of COVID-19 that occurred 3 d earlier than the common COVID-19 symptoms.·METHODS:Regular slit lamp examination,corneal scraping test,and chest computed tomography(CT)were performed for patients with COVID-19 infection.The ophthalmologic treatment included ganciclovir eye drop(50 mglmL,6 times/d).The treatment for diarrhea included Guifu Lizhong pills(TID).The antiviral therapy consisted of oseltamivir(75 mg capsule Q12 H);therapy preventing bacterial infection consisted of azithromycin(250 mg tablet QD)and moxifloxacin(0.4 g tablet Q12 H);and therapy for cough relief and fever prevention consisted of Chinese herbal decoction.·RESULTS:A 35-year-old male suddenly suffered pain,photophobia,and tears in his right eye for one day without systemic COVID-19 symptoms.Patient was diagnosed with keratitis,which was seemingly different from common keratitis.Ganciclovir eye drop was initiated.The corneal scraping test for COVID-19 was positive.The chest CT images were abnormal confirming the diagnosis of COVID-19 infection.The antiviral and antibacterial therapies were initiated.Chinese herbal therapy was used for cough relief and fever prevention.After roughly two weeks,patient recovered from COVID-19.·CONCLUSION:A new type of keratitis,atypical keratitis,is a clinical manifestation of COVID-19,and this clinical manifestation could appear 3 d earlier than fever and cough.The earlier a COVID-19 clinical manifestation is identified,the earlier can a patient be directed to stay at home,and significantly fewer people would be infected.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675129,11774406,and 11934018)the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G07).
文摘We investigate nonlocal advantage of quantum coherence(NAQC)in a correlated dephasing channel modeled by themultimode bosonic reservoir.We obtain analytically the dephasing and memory factors of this channel for the reservoirhaving a Lorentzian spectral density,and analyze how they affect the NAQC defined by the l1 norm and relative entropy.It is shown that the memory effects of this channel on NAQC are state-dependent,and they suppress noticeably the rapiddecay of NAQC for the family of input Bell-like states with one excitation.For the given transmission time of each qubit,we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11775177,11775178,11647057 and 11705146the Special Research Funds of the Department of Education of Shaanxi Province under Grant No 16JK1759+4 种基金the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12the Northwest University Scientific Research Funds under Grant No15NW26the Double First-Class University Construction Project of Northwest University
文摘With the development of quantum information processing, multipartite entanglement measures are needed in many cases. However, there are still no complete orthogonal genuine multipartite entanglement(GME) bases available as Bell states to bipartite systems. To achieve this goal, we find a method to construct complete orthogonal GME states, and we exclude many equivalent states by leveraging the group theory. We also provide the case of a 3-order 3-dimensional Hilbert space as an example and study the application of general results in the dense coding scheme as an application. Moreover, we discuss some open questions and believe that this work will enlighten extensive studies in this field.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11934018, T2121001, 11904393, and 92065114)the CAS Strategic Priority Research Program (Grant No. XDB28000000)+1 种基金Beijing Natural Science Foundation (Grant No. Z200009)Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200041)。
文摘In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.T2121001,11934018,and U1801661)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)+2 种基金the Key-Area Research and Development Program of GuangDong Province,China(Grant No.2018B030326001)Guangdong Provincial Key Laboratory(Grant No.2019B121203002)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.KYTDPT20181011104202253 and 2016ZT06D348)。
文摘We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameterΦ(to be estimated)assumed as uniformly distributed between 0 and 2πwhile fixed in each estimation.One estimation ofΦcan be produced with every two magnetic susceptibility data measured along the two axes respectively,which has an imprecision scaling(1.43±0.02)/N^(0.687±0.003)with respect to the number N of the atomic spins.The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.
基金supported in part by the Key-Area Research and Development Program of Guang-Dong Province, China (Grant No. 2018B030326001)the National Key R&D Program of China (Grant No. 2017YFA0304300)+5 种基金supported by the Japan Society for the Promotion of Science (JSPS) (Postdoctoral Fellowship via Grant No. P19326, and KAKENHI via Grant No. JP19F19326)support from the Natural Science Foundation of Beijing, China (Grant No. Z190012)the National Natural Science Foundation of of China (Grant No. 11890704)support from the National Natural Science Foundation of China (Grant No. T2121001)Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000)Beijing Natural Science Foundation, China (Grant No. Z200009)。
文摘The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearestneighbor(NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11775177,11775178,11647057 and 11705146the Special Research Funds of Shaanxi Province Department of Education under Grant No 16JK1759+5 种基金the Basic Research Plan of Natural Science in Shaanxi Province under Grant No 2018JQ1014the Major Basic Research Program of Natural Science of Shaanxi Province under Grant No 2017ZDJC-32the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province under Grant No 2017KCT-12the Northwest University Scientific Research Funds under Grant No15NW26the Double First-Class University Construction Project of Northwest Universitythe Australian Research Council through Discovery Projects under Grant No DP190101529
文摘The definitions of strong superadditive deficit for relative entropy coherence and monogamy deficit of measurement-dependent global quantum discord are proposed.The equivalence between them is proved,which provides a useful criterion for the validity of the strong superadditive inequality of relative entropy coherence.In addition,the strong superadditive deficit of rela.tive entropy coherence is proved to be greater than or equal to zero under the condition that bipartite measurement-dependent global quantum discord(GQD)does not increase under the discarding of subsystems.Using the Monte Carlo method,it is shown that both the strong superadditive inequality of relative entropy coherence and the monogamy inequality of measurement-dependent GQD are established under general circumstances.The bipartite measurement-dependent GQD does not increase under the discarding of subsystems.The multipartite situation is also discussed in detail.
基金supported by China Postdoctoral Science Foundation(Grant No.2020T130643)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.12047554)+5 种基金support from the National Key Research and Development Program of China(Grant No.2016YFA0300502)the Research Grants Council of Hong Kong SAR China(Grant No.17303019)support from the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11774406 and 11934018)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Beijing Academy of Quantum Information Science(Grant No.Y18G07)。
文摘Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics.
基金the National Natural Science Foundation of China(Grant Nos.11774406 and 11934018)the National Key Research and Develepment Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G07)。
文摘We investigate the nonlocal advantage of quantum coherence(NAQC)and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence.Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained,based on which we calculate the NAQC and entanglement.In the weak region of magnetic field,the NAQC behaves as a damped oscillation with the time evolves,while the entanglement decays exponentially(behaves as a damped oscillation)for the spin-1/2(spin-1)case.Moreover,the decay of both the NAQC and entanglement can be suppressed significantly by tuning the magnetic field and anisotropy of the spin interaction to some decoherence-rate-determined optimal values.