Hydrogel-Ⅰ was fabricated via sodium alginate in situ-embedding with MAL powders and then applied to decontaminating Pb(Ⅱ) from water. Conditions for preparing Hydrogel-Ⅰ and the adsorption of Pb(Ⅱ) over Hydrogel-...Hydrogel-Ⅰ was fabricated via sodium alginate in situ-embedding with MAL powders and then applied to decontaminating Pb(Ⅱ) from water. Conditions for preparing Hydrogel-Ⅰ and the adsorption of Pb(Ⅱ) over Hydrogel-I were optimized through response surface methodology coupled with central composite design. XPS revealed that the groups of —OH, —COO—, —NH, —NHand —CSS— carried by Hydrogel-Ⅰ were responsible for the uptake of Pb(Ⅱ). Ions exchange, surface complexation, electrostatic attraction and pore-filling effect contributed to the adsorption process. Adsorption performances of Pb(Ⅱ) by Hydrogel-Ⅰ and MAL powders were compared. Although they exhibited similar adsorption rate and maximum adsorption capacity(qm), the reusing ability of Hydrogel-Ⅰ was better and it was easier to be separated from aqueous solution after treatment. Even compared with organic hydrogel materials,Hydrogel-Ⅰ presented relatively quick adsorption speed and high adsorption capacity. It can be concluded that Hydrogel-Ⅰ could be an alternative scavenger for the treatment of Pb(Ⅱ) from aqueous solution.展开更多
基金funded by the National Key Research and Development Project (No.2019YFC1804800)Key R&D Program of Shaanxi Province,China (No.2019SF-253)+3 种基金the Fundamental Research Funds for the Central Universities,China (No.300102291504)the Pearl River S&T Nova Program of Guangzhou,China (No.201710010065)the Science and Technology Program of Guangdong Forestry Administration,China (No.2020-KYXM-08)the Key Laboratory of Resource Chemistry,Ministry of Education,China (No.KLRC_ME2102)。
文摘Hydrogel-Ⅰ was fabricated via sodium alginate in situ-embedding with MAL powders and then applied to decontaminating Pb(Ⅱ) from water. Conditions for preparing Hydrogel-Ⅰ and the adsorption of Pb(Ⅱ) over Hydrogel-I were optimized through response surface methodology coupled with central composite design. XPS revealed that the groups of —OH, —COO—, —NH, —NHand —CSS— carried by Hydrogel-Ⅰ were responsible for the uptake of Pb(Ⅱ). Ions exchange, surface complexation, electrostatic attraction and pore-filling effect contributed to the adsorption process. Adsorption performances of Pb(Ⅱ) by Hydrogel-Ⅰ and MAL powders were compared. Although they exhibited similar adsorption rate and maximum adsorption capacity(qm), the reusing ability of Hydrogel-Ⅰ was better and it was easier to be separated from aqueous solution after treatment. Even compared with organic hydrogel materials,Hydrogel-Ⅰ presented relatively quick adsorption speed and high adsorption capacity. It can be concluded that Hydrogel-Ⅰ could be an alternative scavenger for the treatment of Pb(Ⅱ) from aqueous solution.