To achieve sufficient air conditioning of large buildings,reasonable air distribution in indoor spaces is an effective method for creating stratified air conditioning.Therefore,optimizing the air distribution in large...To achieve sufficient air conditioning of large buildings,reasonable air distribution in indoor spaces is an effective method for creating stratified air conditioning.Therefore,optimizing the air distribution in large buildings is extremely significant.In this paper,we expound on a new method for air distribution design and optimization based on target value evaluation and summarize the relevant design processes based on an orthogonal test and by decoupling the effects of the size of the tuyere,airflow temperature,air-supply angle and velocity on air distribution.Then,we present a design case.To optimize the distribution of a lateral air supply in winter,the deflection angle,velocity and temperature of the air supply can be determined in turn.For the large and tall building types addressed in this paper,the optimal air-supply angle is 2°,the optimal air-supply velocity is 8 m/s,and the optimal air-supply temperature is 19℃.展开更多
基金sponsored by the National Key R&D Program of China(No.2017YFC0702800)the National Natural Science Foundation of China(No.51878533 and No.51508442)+1 种基金the Natural Science Foundation of Shaanxi Province(No.2019JM-233)the Industrialization Fund of the Shaanxi Provincial Department of Education(No.19JC023).
文摘To achieve sufficient air conditioning of large buildings,reasonable air distribution in indoor spaces is an effective method for creating stratified air conditioning.Therefore,optimizing the air distribution in large buildings is extremely significant.In this paper,we expound on a new method for air distribution design and optimization based on target value evaluation and summarize the relevant design processes based on an orthogonal test and by decoupling the effects of the size of the tuyere,airflow temperature,air-supply angle and velocity on air distribution.Then,we present a design case.To optimize the distribution of a lateral air supply in winter,the deflection angle,velocity and temperature of the air supply can be determined in turn.For the large and tall building types addressed in this paper,the optimal air-supply angle is 2°,the optimal air-supply velocity is 8 m/s,and the optimal air-supply temperature is 19℃.