As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fa...As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fabrication of new nanofilm in this family. Using precious metals, such as platinum and palladium, to serve as transition metals combined with chalcogen is a new approach to explore novel TMDs. Also, the proportion between transition metal and chalcogen atoms is found not only to exist in conventional form of 1 : 2. Herein, we reported a comprehensive study of a new 2D precious metal selenide, namely AuSe monolayer. Based on density functional theory, our result indicated that AuSe monolayer is a semiconductor with indirect band-gap of 2.0 eV, which possesses superior dynamic stability and thermodynamic stability with cohesive energy up to–7.87 eV/atom. Moreover, it has been confirmed that ionic bonding predominates in Au–Se bonds and absorption peaks in all directions distribute in the deep ultraviolet region. In addition, both vibration modes dominating marked Raman peaks are parallel to the 2D plane.展开更多
Two-dimensional material has been regarded as a competitive silicon-alternative with a gate length approaching sub-10 nm,due to its unique atomic thickness and outstanding electronic properties.Herein,we provide a com...Two-dimensional material has been regarded as a competitive silicon-alternative with a gate length approaching sub-10 nm,due to its unique atomic thickness and outstanding electronic properties.Herein,we provide a comprehensively study on the electronic and ballistic transport properties of the puckered arsenene by the density functional theory coupled with nonequilibrium Green’s function formalism.The puckered arsenene exhibits an anisotropic characteristic,as effective mass for the electron/hole in the armchair and zigzag directions is 0.35/0.16 m0 and 1.26/0.32 m0.And it also holds a high electron mobility,as the highest value can reach 20045 cm2V–1s–1.Moreover,the puckered arsenene FETs with a 10-nm channel length possess high on/off ratio above 105 and a steep subthreshold swing below 75 mV/dec,which have the potential to design high-performance electronic devices.Interestingly,the channel length limit for arsenene FETs can reach 7-nm.Furthermore,the benchmarking of the intrinsic arsenene FETs and the 32-bit arithmetic logic unit circuits also shows that the devices possess high switching speed and low energy dissipation,which can be comparable to the CMOS technologies and other CMOS alternatives.Therefore,the puckered arsenene is an attractive channel material in next-generation electronics.展开更多
Developing low-power FETs holds significant importance in advancing logic circuits,especially as the feature size of MOSFETs approaches sub-10 nanometers.However,this has been restricted by the thermionic limitation o...Developing low-power FETs holds significant importance in advancing logic circuits,especially as the feature size of MOSFETs approaches sub-10 nanometers.However,this has been restricted by the thermionic limitation of SS,which is limited to 60 mV per decade at room temperature.Herein,we proposed a strategy that utilizes 2D semiconductors with an isolated-band feature as channels to realize subthermionic SS in MOSFETs.Through high-throughput calculations,we established a guiding principle that combines the atomic structure and orbital interaction to identify their sub-thermionic transport potential.This guides us to screen 192 candidates from the 2D material database comprising 1608 systems.Additionally,the physical relationship between the sub-thermionic transport performances and electronic structures is further revealed,which enables us to predict 15 systems with promising device performances for low-power applications with supply voltage below 0.5 V.This work opens a new way for the low-power electronics based on 2D materials and would inspire extensive interests in the experimental exploration of intrinsic steep-slope MOSFETs.展开更多
Neutron-transmutation doping(NTD)has been demonstrated for the first time in this work for substitutional introduction of tin(Sn)shallow donors into two-dimensional(2D)layered indium selenide(InSe)to manipulate electr...Neutron-transmutation doping(NTD)has been demonstrated for the first time in this work for substitutional introduction of tin(Sn)shallow donors into two-dimensional(2D)layered indium selenide(InSe)to manipulate electron transfer and charge carrier dynamics.Multidisciplinary study including density functional theory,transient optical absorption,and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe.The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times,being as high as 397 A/W.The results show that NTD is a highly effective and controllable doping method,possessing good compatibility with the semiconductor manufacturing process,even after device fabrication,and can be carried out without introducing any contamination,which is radically different from traditional doping methods.展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20180071)the Fundamental Research Funds for the Central Universities(No.30919011109)PAPD of Jiangsu Higher Education Institutions
文摘As a large family of 2D materials, transition metal dichalcogenides(TMDs) have stimulated numerous works owing to their attractive properties. The replacement of constituent elements could promote the discovery and fabrication of new nanofilm in this family. Using precious metals, such as platinum and palladium, to serve as transition metals combined with chalcogen is a new approach to explore novel TMDs. Also, the proportion between transition metal and chalcogen atoms is found not only to exist in conventional form of 1 : 2. Herein, we reported a comprehensive study of a new 2D precious metal selenide, namely AuSe monolayer. Based on density functional theory, our result indicated that AuSe monolayer is a semiconductor with indirect band-gap of 2.0 eV, which possesses superior dynamic stability and thermodynamic stability with cohesive energy up to–7.87 eV/atom. Moreover, it has been confirmed that ionic bonding predominates in Au–Se bonds and absorption peaks in all directions distribute in the deep ultraviolet region. In addition, both vibration modes dominating marked Raman peaks are parallel to the 2D plane.
基金financially supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China(91964103)the Natural Science Foundation of Jiangsu Province(BK20180071)+1 种基金the Fundamental Research Funds for the Central Universities(No.30919011109)sponsored by Qing Lan Project of Jiangsu Province,and the Six Talent Peaks Project of Jiangsu Province(Grant No.XCL-035).
文摘Two-dimensional material has been regarded as a competitive silicon-alternative with a gate length approaching sub-10 nm,due to its unique atomic thickness and outstanding electronic properties.Herein,we provide a comprehensively study on the electronic and ballistic transport properties of the puckered arsenene by the density functional theory coupled with nonequilibrium Green’s function formalism.The puckered arsenene exhibits an anisotropic characteristic,as effective mass for the electron/hole in the armchair and zigzag directions is 0.35/0.16 m0 and 1.26/0.32 m0.And it also holds a high electron mobility,as the highest value can reach 20045 cm2V–1s–1.Moreover,the puckered arsenene FETs with a 10-nm channel length possess high on/off ratio above 105 and a steep subthreshold swing below 75 mV/dec,which have the potential to design high-performance electronic devices.Interestingly,the channel length limit for arsenene FETs can reach 7-nm.Furthermore,the benchmarking of the intrinsic arsenene FETs and the 32-bit arithmetic logic unit circuits also shows that the devices possess high switching speed and low energy dissipation,which can be comparable to the CMOS technologies and other CMOS alternatives.Therefore,the puckered arsenene is an attractive channel material in next-generation electronics.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0428)the Training Program of the Major Research Plan of the National Natural Science Foundation of China(91964103)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20180071)the Fundamental Research Funds for the Central Universities(30919011109)sponsored by Qing Lan Project of Jiangsu Province,and the Six Talent Peaks Project of Jiangsu Province(XCL-035)Research Grant Council of Hong Kong(CRS_PolyU502/22).
文摘Developing low-power FETs holds significant importance in advancing logic circuits,especially as the feature size of MOSFETs approaches sub-10 nanometers.However,this has been restricted by the thermionic limitation of SS,which is limited to 60 mV per decade at room temperature.Herein,we proposed a strategy that utilizes 2D semiconductors with an isolated-band feature as channels to realize subthermionic SS in MOSFETs.Through high-throughput calculations,we established a guiding principle that combines the atomic structure and orbital interaction to identify their sub-thermionic transport potential.This guides us to screen 192 candidates from the 2D material database comprising 1608 systems.Additionally,the physical relationship between the sub-thermionic transport performances and electronic structures is further revealed,which enables us to predict 15 systems with promising device performances for low-power applications with supply voltage below 0.5 V.This work opens a new way for the low-power electronics based on 2D materials and would inspire extensive interests in the experimental exploration of intrinsic steep-slope MOSFETs.
基金State Key Research Development Program of China(Grant No.2019YFB2203503)National Natural Science Fund(Grant Nos.61875138,61961136001,62104153,62105211 and U1801254)+2 种基金Natural Science Foundation of Guangdong Province(2018B030306038 and 2020A1515110373)Science and Technology Innovation Commission of Shenzhen(JCYJ20180507182047316 and 20200805132016001)Postdoctoral Science Foundation of China(No.2021M702237)。
文摘Neutron-transmutation doping(NTD)has been demonstrated for the first time in this work for substitutional introduction of tin(Sn)shallow donors into two-dimensional(2D)layered indium selenide(InSe)to manipulate electron transfer and charge carrier dynamics.Multidisciplinary study including density functional theory,transient optical absorption,and FET devices have been carried out to reveal that the field effect electron mobility of the fabricated phototransistor is increased 100-fold due to the smaller electron effective mass and longer electron life time in the Sn-doped InSe.The responsivity of the Sn-doped InSe based phototransistor is accordingly enhanced by about 50 times,being as high as 397 A/W.The results show that NTD is a highly effective and controllable doping method,possessing good compatibility with the semiconductor manufacturing process,even after device fabrication,and can be carried out without introducing any contamination,which is radically different from traditional doping methods.