A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simu...A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.展开更多
Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation metho...Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation method.The results show two types of optimal initial perturbations of sea surface salinity,one associated with freshwater and the other with salinity.Both types of perturbations excite decadal variability of the THC.Under the same amplitude of initial perturbation,the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation,suggesting that the THC is more sensitive to freshwater than salinity perturbation.As the amplitude of initial perturbation increases,the decadal variations become stronger for both perturbations.For salinity perturbations,recovery time of the THC to return to steady state gradually saturates with increasing amplitude,whereas this recovery time increases remarkably for freshwater perturbations.A nonlinear(advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation.The results are consistent with previous ones from simple box models,and highlight the importance of nonlinear feedback in decadal THC variability.展开更多
The decadal variability of the North Atlantic thermohaline circulation(THC) is investigated within a three-dimensional ocean circulation model using the conditional nonlinear optimal perturbation method. The results s...The decadal variability of the North Atlantic thermohaline circulation(THC) is investigated within a three-dimensional ocean circulation model using the conditional nonlinear optimal perturbation method. The results show that the optimal initial perturbations of temperature and salinity exciting the strongest decadal THC variations have similar structures: the perturbations are mainly in the northwestern basin at a depth ranging from 1500 to 3000 m. These temperature and salinity perturbations act as the optimal precursors for future modifications of the THC, highlighting the importance of observations in the northwestern basin to monitor the variations of temperature and salinity at depth. The decadal THC variation in the nonlinear model initialized by the optimal salinity perturbations is much stronger than that caused by the optimal temperature perturbations, indicating that salinity variations might play a relatively important role in exciting the decadal THC variability. Moreover, the decadal THC variations in the tangent linear and nonlinear models show remarkably different characteristics, suggesting the importance of nonlinear processes in the decadal variability of the THC.展开更多
We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems.Many of these problems are characterized by high-dimensional dynamical systems which ...We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems.Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed.The computation of the critical conditions associated with these transitions,popularly referred to as‘tipping points’,is important for understanding the transition mechanisms.We describe the two basic classes of methods of numerical bifurcation analysis,which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system.The numerical challenges involved in both methods are mentioned and possible solutions to current bottlenecks are given.To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems,we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.展开更多
基金provided by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No. KZCX2-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao (Grant No.11-1-4-95-jch)the National Natural Science Foundation of China (Grant No. 40821092)
文摘A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interracial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417404)
文摘Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation(THC) is investigated with a three-dimensional ocean circulation model,using the conditional nonlinear optimal perturbation method.The results show two types of optimal initial perturbations of sea surface salinity,one associated with freshwater and the other with salinity.Both types of perturbations excite decadal variability of the THC.Under the same amplitude of initial perturbation,the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation,suggesting that the THC is more sensitive to freshwater than salinity perturbation.As the amplitude of initial perturbation increases,the decadal variations become stronger for both perturbations.For salinity perturbations,recovery time of the THC to return to steady state gradually saturates with increasing amplitude,whereas this recovery time increases remarkably for freshwater perturbations.A nonlinear(advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation.The results are consistent with previous ones from simple box models,and highlight the importance of nonlinear feedback in decadal THC variability.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2012CB417404)
文摘The decadal variability of the North Atlantic thermohaline circulation(THC) is investigated within a three-dimensional ocean circulation model using the conditional nonlinear optimal perturbation method. The results show that the optimal initial perturbations of temperature and salinity exciting the strongest decadal THC variations have similar structures: the perturbations are mainly in the northwestern basin at a depth ranging from 1500 to 3000 m. These temperature and salinity perturbations act as the optimal precursors for future modifications of the THC, highlighting the importance of observations in the northwestern basin to monitor the variations of temperature and salinity at depth. The decadal THC variation in the nonlinear model initialized by the optimal salinity perturbations is much stronger than that caused by the optimal temperature perturbations, indicating that salinity variations might play a relatively important role in exciting the decadal THC variability. Moreover, the decadal THC variations in the tangent linear and nonlinear models show remarkably different characteristics, suggesting the importance of nonlinear processes in the decadal variability of the THC.
基金The workshop and the work of F.W.Wubs and H.A.Dijkstra was partially sponsored by the Netherlands Organization of Scientific Research(NWO)through the NWOCOMPLEXITY project PreKursThe participation of F.I.Dragomirescu to the workshop was partially supported by a Grant of the Romanian National Authority for Scientific Research,CNCS-UEFISCDI,project number PN-II-RU-PD-2011-3-0153,31/5.10.2011.Sandia National Laboratory is a multiprogram laboratory operated by Sandia Corporation,a Lockheed Martin Company,for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000The work of J.Sanchez-Umbria was supported by projects MTM2010-16930 and 2009-SGR-67.
文摘We provide an overview of current techniques and typical applications of numerical bifurcation analysis in fluid dynamical problems.Many of these problems are characterized by high-dimensional dynamical systems which undergo transitions as parameters are changed.The computation of the critical conditions associated with these transitions,popularly referred to as‘tipping points’,is important for understanding the transition mechanisms.We describe the two basic classes of methods of numerical bifurcation analysis,which differ in the explicit or implicit use of the Jacobian matrix of the dynamical system.The numerical challenges involved in both methods are mentioned and possible solutions to current bottlenecks are given.To demonstrate that numerical bifurcation techniques are not restricted to relatively low-dimensional dynamical systems,we provide several examples of the application of the modern techniques to a diverse set of fluid mechanical problems.