期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SCHURTER医疗行业的应用-safe & easy
1
作者 henry han 《世界电子元器件》 2015年第10期31-31,共1页
医疗设备的使用必须确保患者和医务人员的安全,因此,其安全设计工作应该从电源供应开始,电源插头和电源接入模块(无论是否配备了电源滤波器)必须满足医用电气设备的基本标准IEC/UL60601-1的要求。医疗领域会用到各种医疗设备。无论是正... 医疗设备的使用必须确保患者和医务人员的安全,因此,其安全设计工作应该从电源供应开始,电源插头和电源接入模块(无论是否配备了电源滤波器)必须满足医用电气设备的基本标准IEC/UL60601-1的要求。医疗领域会用到各种医疗设备。无论是正常工作期间还是发生故障时,医疗设备都不得对患者或医务人员造成任何伤害。如果某台设备导致电路出现短路或剩余电流,则可能触发上游保护系统动作,从而切断其他可能用于维系生命的设备电源。因此。 展开更多
关键词 正常工作期 医疗设备 电源插头 医用电气设备 设备电源 SCHURTER EASY SAFE 电源滤波器 剩余电流
下载PDF
Unsupervised spectral feature selection algorithms for high dimensional data
2
作者 Mingzhao WANG henry han +1 位作者 Zhao HUANG Juanying XIE 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第5期27-40,共14页
It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of samples.Feature selection especial... It is a significant and challenging task to detect the informative features to carry out explainable analysis for high dimensional data,especially for those with very small number of samples.Feature selection especially the unsupervised ones are the right way to deal with this challenge and realize the task.Therefore,two unsupervised spectral feature selection algorithms are proposed in this paper.They group features using advanced Self-Tuning spectral clustering algorithm based on local standard deviation,so as to detect the global optimal feature clusters as far as possible.Then two feature ranking techniques,including cosine-similarity-based feature ranking and entropy-based feature ranking,are proposed,so that the representative feature of each cluster can be detected to comprise the feature subset on which the explainable classification system will be built.The effectiveness of the proposed algorithms is tested on high dimensional benchmark omics datasets and compared to peer methods,and the statistical test are conducted to determine whether or not the proposed spectral feature selection algorithms are significantly different from those of the peer methods.The extensive experiments demonstrate the proposed unsupervised spectral feature selection algorithms outperform the peer ones in comparison,especially the one based on cosine similarity feature ranking technique.The statistical test results show that the entropy feature ranking based spectral feature selection algorithm performs best.The detected features demonstrate strong discriminative capabilities in downstream classifiers for omics data,such that the AI system built on them would be reliable and explainable.It is especially significant in building transparent and trustworthy medical diagnostic systems from an interpretable AI perspective. 展开更多
关键词 feature selection spectral clustering feature ranking techniques ENTROPY cosine similarity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部