期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Banach空间的逼近紧性与度量投影算子的连续性及其应用 被引量:1
1
作者 陈述涛 henryk hudzik +2 位作者 Wojciech Kowalewski 王玉文 Marek Wislta 《中国科学(A辑)》 CSCD 北大核心 2007年第11期1303-1312,共10页
首先给出赋范线性空间中的非空集合C的逼近紧性的等价描述.如所周知,如果C是Banach空间X中的一个逼近紧的半Chebyshev闭集,那么由X到C的度量投影算子π_c是连续的.当X是中点局部一致凸的Banach空间,利用Banach空间几何的技巧证得:C的逼... 首先给出赋范线性空间中的非空集合C的逼近紧性的等价描述.如所周知,如果C是Banach空间X中的一个逼近紧的半Chebyshev闭集,那么由X到C的度量投影算子π_c是连续的.当X是中点局部一致凸的Banach空间,利用Banach空间几何的技巧证得:C的逼近紧性对投影算子π_c的连续性也是必要的.利用这个一般结论给出:当T是由逼近紧且严格凸的Banach空间X到中点局部一致凸Banach空间Y的有界线性算子时,T有连续的Morse-Penrose度量广义逆T^+的充分必要条件. 展开更多
关键词 逼近紧性 连续性 度量投影算子 中点局部一致凸
原文传递
Continuous Homogeneous Selections of Set-Valued Metric Generalized Inverses of Linear Operators in Banach Spaces 被引量:5
2
作者 Hai Feng MA henryk hudzik Wen WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第1期45-56,共12页
In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessar... In this paper, continuous homogeneous selections for the set-valued metric generalized inverses T^ of linear operators T in Banach spaces are investigated by means of the methods of geometry of Banach spaces. Necessary and sufficient conditions for bounded linear operators T to have continuous homogeneous selections for the set-valued metric generalized inverses T~ are given. The results are an answer to the problem posed by Nashed and Votruba. 展开更多
关键词 Continuous homogeneous selection metric generalized inverse approximative compactness metric projection
原文传递
The Generalized Regular Points and Narrow Spectrum Points of Bounded Linear Operators on Hilbert Spaces 被引量:1
3
作者 Hai Feng MA henryk hudzik +1 位作者 Yu Wen WANG Zhao Feng MA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第12期2349-2354,共6页
In this paper, we introduce the concepts of generalized regular points and narrow spectrum points of bounded linear operators on Hilbert spaces. The concept of generalized regular points is an extension of the concept... In this paper, we introduce the concepts of generalized regular points and narrow spectrum points of bounded linear operators on Hilbert spaces. The concept of generalized regular points is an extension of the concept regular points, and so, the set of all spectrum points is reduced to the narrow spectrum. We present not only the same and different properties of spectrum and of narrow spectrum but also show the relationship between them. Finally, the well known problem about the invariant subspaces of bounded linear operators on separable Hilbert spaces is simplified to the problem of the operator with narrow spectrum only. 展开更多
关键词 Locally fine point rank theorem narrow spectrum spectral radius invariant subspace
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部