We studied the first oxidation product of vitamin C, the dehydro-L-ascorbic acid dimer and characterized it by infrared and Raman spectroscopies in the solid phase. The Density functional theory was used to study its ...We studied the first oxidation product of vitamin C, the dehydro-L-ascorbic acid dimer and characterized it by infrared and Raman spectroscopies in the solid phase. The Density functional theory was used to study its structure and vibrational properties. These calculations gave us a precise knowledge of the normal modes of vibration taking into account that the molecule comprises a system of five fused rings; non planar γ-lactone and furonose rings are attached to a central dioxan ring in the twisted boat conformation. The calculated harmonic vibrational frequencies are consistent with the experimental vibrational spectra. An assignment of the observed spectral features is proposed. The shift of the band located in the infrared spectrum of the ascorbic acid from 3409 cm^-1 to 3299 cml and the remarkable increase in the band intensity at 1784 cm^-1 evidences the acid decomposition into its first product, the dehydro-L-ascorbic acid. The theoretical vibrational calculations allowed us to obtain a set of scaled force constants. The nature of the different -γ-lactone, furanose and dioxan rings and their topological properties were investigated by means of natural bond orbital and Bader's atoms in the molecule theory, respectively.展开更多
文摘We studied the first oxidation product of vitamin C, the dehydro-L-ascorbic acid dimer and characterized it by infrared and Raman spectroscopies in the solid phase. The Density functional theory was used to study its structure and vibrational properties. These calculations gave us a precise knowledge of the normal modes of vibration taking into account that the molecule comprises a system of five fused rings; non planar γ-lactone and furonose rings are attached to a central dioxan ring in the twisted boat conformation. The calculated harmonic vibrational frequencies are consistent with the experimental vibrational spectra. An assignment of the observed spectral features is proposed. The shift of the band located in the infrared spectrum of the ascorbic acid from 3409 cm^-1 to 3299 cml and the remarkable increase in the band intensity at 1784 cm^-1 evidences the acid decomposition into its first product, the dehydro-L-ascorbic acid. The theoretical vibrational calculations allowed us to obtain a set of scaled force constants. The nature of the different -γ-lactone, furanose and dioxan rings and their topological properties were investigated by means of natural bond orbital and Bader's atoms in the molecule theory, respectively.