期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Progress in research on the exploration and evaluation of deep geothermal resources in the Fujian-Guangdong-Hainan region,China
1
作者 herong zheng Jun Luo 《Energy Geoscience》 EI 2024年第2期1-13,共13页
Deep geothermal resources in the Fujian-Guangdong-Hainan region,China,offer significant potential for sustainable energy.The diverse igneous rock formations along the southeast coast present intricate geological chall... Deep geothermal resources in the Fujian-Guangdong-Hainan region,China,offer significant potential for sustainable energy.The diverse igneous rock formations along the southeast coast present intricate geological challenges that impede exploration and evaluation efforts.In this study,we address critical concerns related to the Fujian-Guangdong-Hainan region's deep geothermal resources,encompassing heat source composition,formation conditions,strategic favorable areas,and exploration directions.Our methods involve the analysis of regional geothermal reservoirs and cap rocks.Major findings include:the primary heat sources in the Fujian-Guangdong-Hainan region consist of the radioactive heat generation from granites in the crust,heat conduction in the mantle,and,in specific areas like Yangjiang and Shantou,melts within the middle and lower crust;the deep,high-temperature geothermal resources in the region predominantly reside in basins'depressed areas.These areas are characterized by the confluence of triple heat sources:heat from the Earth's crust,mantle,and other supplementary sources;our analysis led to the identification of three strategic areas favorable for deep geothermal resources in the Fujian-Guangdong-Hainan region.These are the Beibu Gulf Basin's continental area,the Yuezhong Depression,and the Fuzhou-Zhangzhou area. 展开更多
关键词 Deep geothermal resources Geology of geothermal energy Strategic selection
下载PDF
Geology and geomechanics of hydraulic fracturing in the Marcellus shale gas play and their potential applications to the Fuling shale gas development 被引量:8
2
作者 herong zheng Jincai Zhang Yuanchang Qi 《Energy Geoscience》 2020年第1期36-46,共11页
Geological characteristics,geomechanical behavior and hydraulic fracture propagation mechanism in the Marcellus shale gas play are analyzed and compared with China’s Fuling shale play.Successful experiences in hydrau... Geological characteristics,geomechanical behavior and hydraulic fracture propagation mechanism in the Marcellus shale gas play are analyzed and compared with China’s Fuling shale play.Successful experiences in hydraulic fracturing and shale gas development in the Marcellus shale gas play are summarized,which might be applicable in other shale plays.The main factors contributing to the successful development of the Marcellus shale gas play include adoption of advanced drilling and completion technologies,increases of hydraulic fracturing stages,proppant concentration and fluid injection volume.The geological and geomechanical mechanisms related to those technologies are analyzed,particularly the in-situ stress impacts on hydraulic fracturing.The minimum horizontal stress controls where the fractures are initiated,and the maximum horizontal stress dominates the direction of the hydraulic fracture propagation.Hydraulic fracturing performed in the shale reservoir normally has no stress barriers in most cases because the shale has a high minimum horizontal stress,inducing hydraulic fractures propagating beyond the reservoir zone,resulting in inefficient stimulation.This is a common problem in shale plays,and its mechanism is studied in the paper.It is also found that the on-azimuth well has a higher productivity than the off-azimuth well,because shear fractures are created in the off-azimuth well,causing main fractures to kink and increasing fracture tortuosity and friction.The Fuling shale gas play has a markedly higher minimum horizontal stress and much smaller horizontal stress difference.The high minimum horizontal stress causes a much higher formation breakdown pressure;therefore,hydraulic fracturing in the Fuling shale gas play needs a higher treatment pressure,which implies higher difficulty in fracture propagation.The small difference in the two horizontal stresses in the Fuling shale gas play generates shorter and more complex hydraulic fractures,because hydraulic fractures in this case are prone to curve to preexisting fractures.To overcome these difficulties,we recommend reducing well spacing and increasing proppant concentration to increase gas productivity for the Fuling shale gas development. 展开更多
关键词 Marcellus shale Fuling shale GEOLOGY GEOMECHANICS In-situ stresses Hydraulic fracturing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部