期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrometeorological Modeling Study of Tropical Cyclone Phet in the Arabian Sea in 2010
1
作者 Mohammed Haggag hesham badry 《Atmospheric and Climate Sciences》 2012年第2期174-190,共17页
Tropical cyclone Phet is the second strongest tropical cyclone ever recorded in the Arabian Sea. Phet made landfall in the northeast mountainous area of Oman in early morning on 4 June in 2010, causing a breaking reco... Tropical cyclone Phet is the second strongest tropical cyclone ever recorded in the Arabian Sea. Phet made landfall in the northeast mountainous area of Oman in early morning on 4 June in 2010, causing a breaking record rainfall in this arid region of 488 mm/48 h. The cyclone heavy rainfall triggered flash floods causing enormous losses in lives and infrastructure in northeast Oman. The state of the art Advanced Research WRF model is used to study the atmospheric circulation and to reproduce the heavy rainfall over Oman. Three one-way nested domains with 32 vertical layers with terrain following sigma coordinate are used to setup eight numerical experiments aiming to investigate the effect of initialization time, horizontal grid resolution and terrain elevations on reproducing the cyclone track, intensity and heavy rainfall. Simulation results show negligible effect of model initialization time on cyclone track, intensity and rainfall. In contrast, the orographic effect played a substantial role in rainfall simulation over northeast Oman. The heavy rainfall was a combination of the cyclone circulation effect and the orographic lifting in the mountains. The northeasterly cyclone moist-warm wind was lifted in the Omani mountains releasing its potential energy and enhancing further thermal convection. The numerical experiment with the highest terrain elevation (RUN3.3-C) resulted in overestimation of observed rainfall due to the enhanced topographic lifting of the saturated cyclone wind. Experiment with similar horizontal grid resolution but smoother terrain elevation (RUN3.3-TER) resulted in much less rainfall amount comparable to the observed values. The increased precipitation in RUN3.3-C is due to the increase in the rain- water and cloud water and graupel of the explicit moisture scheme. 展开更多
关键词 CYCLONE Phet Arabian Sea Oman WRF RAINFALL OROGRAPHY Simulation CONVECTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部