Titanium dioxide (TiO<sub>2</sub>) doped with neodymium (Nd) and/or Gadolinium (Gd) rare-earth elements were fabricated into nanotubes via the hydrothermal method in a KOH solution and in-situ doping. Tita...Titanium dioxide (TiO<sub>2</sub>) doped with neodymium (Nd) and/or Gadolinium (Gd) rare-earth elements were fabricated into nanotubes via the hydrothermal method in a KOH solution and in-situ doping. Titanium dioxide nanotubes (TNTs) and in-situ Nd-doped and/or Gd-doped TNTs were characterized with transmission and scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Morphologies indicated a network of aggregated nanotubes. The phase and composition analyses revealed that the lanthanide TNTs had anatase phases with Nd and/or Gd nanoparticles in the TNT lattice. The nanoparticles were uniformly deposited on the surface because of hydroxyl groups on the TNT surfaces, resulting in a very high loading density. The outer diameter and the length of the TNTs increased with doping. The mechanisms for the formation of multiwall TNTs are discussed.展开更多
文摘Titanium dioxide (TiO<sub>2</sub>) doped with neodymium (Nd) and/or Gadolinium (Gd) rare-earth elements were fabricated into nanotubes via the hydrothermal method in a KOH solution and in-situ doping. Titanium dioxide nanotubes (TNTs) and in-situ Nd-doped and/or Gd-doped TNTs were characterized with transmission and scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Morphologies indicated a network of aggregated nanotubes. The phase and composition analyses revealed that the lanthanide TNTs had anatase phases with Nd and/or Gd nanoparticles in the TNT lattice. The nanoparticles were uniformly deposited on the surface because of hydroxyl groups on the TNT surfaces, resulting in a very high loading density. The outer diameter and the length of the TNTs increased with doping. The mechanisms for the formation of multiwall TNTs are discussed.