期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Efficient Acceleration of Solving Heat and Mass Transfer Equations with the First Kind Boundary Conditions in Capillary Porous Radially Composite Cylinder Using Programmable Graphics Hardware
1
作者 hira narang Fan Wu Abdul Rafae Mohammed 《Journal of Computer and Communications》 2019年第7期267-281,共15页
With the latest advances in computing technology, a huge amount of efforts have gone into simulation of a range of scientific phenomena in engineering fields. One such case is the simulation of heat and mass transfer ... With the latest advances in computing technology, a huge amount of efforts have gone into simulation of a range of scientific phenomena in engineering fields. One such case is the simulation of heat and mass transfer in capillary porous media, which is becoming more and more necessary in analyzing a number of eventualities in science and engineering applications. However, this procedure of numerical solution of heat and mass transfer equations for capillary porous media is very time consuming. Therefore, this paper pursuit is at making use of one of the acceleration methods developed in the graphics community that exploits a graphical processing unit (GPU), which is applied to the numerical solutions of such heat and mass transfer equations. The nVidia Compute Unified Device Architecture (CUDA) programming model offers a correct approach of applying parallel computing to applications with graphical processing unit. This paper suggests a true improvement in the performance while solving the heat and mass transfer equations for capillary porous radially composite cylinder with the first type of boundary conditions. This heat and mass transfer simulation is carried out through the usage of CUDA platform on nVidia Quadro FX 4800 graphics card. Our experimental outcomes exhibit the drastic overall performance enhancement when GPU is used to illustrate heat and mass transfer simulation. GPU can considerably accelerate the performance with a maximum found speedup of more than 5-fold times. Therefore, the GPU is a good strategy to accelerate the heat and mass transfer simulation in porous media. 展开更多
关键词 Numerical Solution Heat and Mass Transfer General Purpose GRAPHICS Processing Unit (GPGPU) CUDA
下载PDF
An Efficient Acceleration of Solving Heat and Mass Transfer Equations with the Second Kind Boundary Conditions in Capillary Porous Composite Cylinder Using Programmable Graphics Hardware
2
作者 hira narang Fan Wu Abdul Rafae Mohammed 《Journal of Computer and Communications》 2018年第9期24-38,共15页
With the recent developments in computing technology, increased efforts have gone into simulation of various scientific methods and phenomenon in engineering fields. One such case is the simulation of heat and mass tr... With the recent developments in computing technology, increased efforts have gone into simulation of various scientific methods and phenomenon in engineering fields. One such case is the simulation of heat and mass transfer in capillary porous media, which is becoming more and more important in analysing various scenarios in engineering applications. Analysing such heat and mass transfer phenomenon in a given environment requires us to simulate it. This entails simulation of coupled heat mass transfer equations. However, this process of numerical solution of heat and mass transfer equations is very much time consuming. Therefore, this paper aims at utilizing one of the acceleration techniques developed in the graphics community that exploits a graphics processing unit (GPU) which is applied to the numerical solutions of heat and mass transfer equations. The nVidia Compute Unified Device Architecture (CUDA) programming model caters a good method of applying parallel computing to program the graphical processing unit. This paper shows a good improvement in the performance while solving the heat and mass transfer equations for capillary porous composite cylinder with the second kind of boundary conditions numerically running on GPU. This heat and mass transfer simulation is implemented using CUDA platform on nVidia Quadro FX 4800 graphics card. Our experimental results depict the drastic performance improvement when GPU is used to perform heat and mass transfer simulation. GPU can significantly accelerate the performance with a maximum observed speedup of more than 7-fold times. Therefore, the GPU is a good approach to accelerate the heat and mass transfer simulation. 展开更多
关键词 Numerical Solution Heat and Mass Transfer General Purpose GRAPHICS Processing Unit (GPGPU) CUDA
下载PDF
An Overview of Mobile Malware and Solutions
3
作者 Fan Wu hira narang Dwayne Clarke 《Journal of Computer and Communications》 2014年第12期8-17,共10页
Mobile Security has been a rapidly growing field in the security area. With the increases of mobile devices and mobile applications, the need for mobile security has increased dramatically over the past several years.... Mobile Security has been a rapidly growing field in the security area. With the increases of mobile devices and mobile applications, the need for mobile security has increased dramatically over the past several years. Many research and development projects on mobile security are ongoing in government, industry and academia. In this paper, we present an analysis of current mobile security problems and propose the possible solutions to malware threats. Our experiments show antimalware can protect mobile device from different types of mobile malware threats effectively. 展开更多
关键词 MOBILE SECURITY MOBILE MALWARE Anti-Malware
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部