Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of audio signals to protect the copyrights. However, little attention has been given to the optimal position...Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of audio signals to protect the copyrights. However, little attention has been given to the optimal position in the frequency domain for embedding watermarks. In general, there is a tradeoff between the quality of the watermarked audio and the tolerance of watermarks to signal processing methods, such as compression. In the present study, a watermarking method developed for a visual image by using a wavelet transform was applied to an audio clip. We also improved the performance of both the quality of the watermarked audio and the extraction of watermarks after compression by the MP3 technique. To accomplish this, we created a multipurpose optimization problem for deciding the positions of watermarks in the frequency domain and obtaining a near-optimum solution. The near-optimum solution is obtained by using a genetic algorithm. The experimental results show that the proposed method generates watermarked audios of good quality and high tolerance to MP3 compression. In addition, the security was improved by using the characteristic secret key to embed and extract the watermark information.展开更多
文摘Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of audio signals to protect the copyrights. However, little attention has been given to the optimal position in the frequency domain for embedding watermarks. In general, there is a tradeoff between the quality of the watermarked audio and the tolerance of watermarks to signal processing methods, such as compression. In the present study, a watermarking method developed for a visual image by using a wavelet transform was applied to an audio clip. We also improved the performance of both the quality of the watermarked audio and the extraction of watermarks after compression by the MP3 technique. To accomplish this, we created a multipurpose optimization problem for deciding the positions of watermarks in the frequency domain and obtaining a near-optimum solution. The near-optimum solution is obtained by using a genetic algorithm. The experimental results show that the proposed method generates watermarked audios of good quality and high tolerance to MP3 compression. In addition, the security was improved by using the characteristic secret key to embed and extract the watermark information.