Carbazole-triazine dendrimers with a bulky terminal substituent were synthesized,and the thermally activated delayed fluorescence(TADF)property was investigated.Compared to unsubstituted carbazole dendrimers,dendrimer...Carbazole-triazine dendrimers with a bulky terminal substituent were synthesized,and the thermally activated delayed fluorescence(TADF)property was investigated.Compared to unsubstituted carbazole dendrimers,dendrimers with bulky terminal substituents showed comparable to better photoluminescence quantum yields(PLQY)in neat films.Phenylfluorene(PF)-substituted dendrimers showed the highest PLQY of 81%,a smallΔEst of 0.06 eV,and the fastest reverse intersystem crossing(RISC)rate of∼1×10^(5 )s^(−1) compared to other dendrimers.Phosphorescence measurements of dendrimers and dendrons(fragments)indicate that the close proximity of the triplet energy of phenylfluorene-substituted carbazole dendrons(^(3)LE)to that of phenylfluorene-substituted dendrimers(^(1)CT,^(3)CT)contributes to RISC promotion and improves TADF efficiency.Terminal modification fine-tunes the energy level and suppresses intermolecular interactions,and this study provides a guideline for designing efficient solution-processable and non-doped TADF materials.展开更多
基金Ministry of Education,Culture,Sports,Science and Technology,Grant/Award Number:ARIM/JPMXP1222JI0040Japan Society for the Promotion of Science,Grant/Award Numbers:KAKENHI/JP20KK0316,KAKENHI/JP21H05405,KAKENHI/JP22H02055,KAKENHI/JP23H02026,KAKENHI/JP23H03966,KAKENHI/JP20H02801。
文摘Carbazole-triazine dendrimers with a bulky terminal substituent were synthesized,and the thermally activated delayed fluorescence(TADF)property was investigated.Compared to unsubstituted carbazole dendrimers,dendrimers with bulky terminal substituents showed comparable to better photoluminescence quantum yields(PLQY)in neat films.Phenylfluorene(PF)-substituted dendrimers showed the highest PLQY of 81%,a smallΔEst of 0.06 eV,and the fastest reverse intersystem crossing(RISC)rate of∼1×10^(5 )s^(−1) compared to other dendrimers.Phosphorescence measurements of dendrimers and dendrons(fragments)indicate that the close proximity of the triplet energy of phenylfluorene-substituted carbazole dendrons(^(3)LE)to that of phenylfluorene-substituted dendrimers(^(1)CT,^(3)CT)contributes to RISC promotion and improves TADF efficiency.Terminal modification fine-tunes the energy level and suppresses intermolecular interactions,and this study provides a guideline for designing efficient solution-processable and non-doped TADF materials.