期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Learning the right channel in multimodal imaging: automated experiment in piezoresponse force microscopy
1
作者 Yongtao Liu Rama K.Vasudevan +3 位作者 Kyle P.Kelley hiroshi funakubo Maxim Ziatdinov Sergei V.Kalinin 《npj Computational Materials》 SCIE EI CSCD 2023年第1期2008-2015,共8页
We report the development and experimental implementation of the automated experiment workflows for the identification of thebest predictive channel for a phenomenon of interest in spectroscopic measurements. The appr... We report the development and experimental implementation of the automated experiment workflows for the identification of thebest predictive channel for a phenomenon of interest in spectroscopic measurements. The approach is based on the combinationof ensembled deep kernel learning for probabilistic predictions and a basic reinforcement learning policy for channel selection. Itallows the identification of which of the available observational channels, sampled sequentially, are most predictive of selectedbehaviors, and hence have the strongest correlations. We implement this approach for multimodal imaging in piezoresponse forcemicroscopy (PFM), with the behaviors of interest manifesting in piezoresponse spectroscopy. We illustrate the best predictivechannel for polarization-voltage hysteresis loop and frequency-voltage hysteresis loop areas is amplitude in the model samples. Thesame workflow and code are applicable for any multimodal imaging and local characterization methods. 展开更多
关键词 AUTOMATED POLICY MODAL
原文传递
Author Correction:Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy
2
作者 Kyle P.Kelley Linglong Li +8 位作者 Yao Ren Yoshitaka Ehara hiroshi funakubo Suhas Somnath Stephen Jesse Ye Cao Ramakrishnan Kannan Rama K.Vasudevan Sergei V.Kalinin 《npj Computational Materials》 SCIE EI CSCD 2020年第1期538-538,共1页
The original version of this Article did not acknowledge Rama K.Vasudevan(vasudevanrk@ornl.gov)as a corresponding author.This has now been corrected in both the PDF and HTML versions of the Article.
关键词 HTML RELAXATION knowledge
原文传递
Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy
3
作者 Kyle P.Kelley Linglong Li +8 位作者 Yao Ren Yoshitaka Ehara hiroshi funakubo Suhas Somnath Stephen Jesse Ye Cao Ramakrishnan Kannan Rama K.Vasudevan Sergei V.Kalinin 《npj Computational Materials》 SCIE EI CSCD 2020年第1期723-730,共8页
Spatially resolved time and voltage-dependent polarization dynamics in PbTiO3 thin films is explored using dynamic piezoresponse force microscopy(D-PFM)in conjunction with interferometric displacement sensing.This app... Spatially resolved time and voltage-dependent polarization dynamics in PbTiO3 thin films is explored using dynamic piezoresponse force microscopy(D-PFM)in conjunction with interferometric displacement sensing.This approach gives rise to 4D data sets containing information on bias-dependent relaxation dynamics at each spatial location without long-range electrostatic artifacts.To interpret these data sets in the absence of defined physical models,we employ a non-negative tensor factorization method which clearly presents the data as a product of simple behaviors allowing for direct physics interpretation.Correspondingly,we perform phase-field modeling finding the existence of‘hard’and‘soft’domain wall edges.This approach can be extended to other multidimensional spectroscopies for which even exploratory data analysis leads to unsatisfactory results due to many components in the decomposition. 展开更多
关键词 RELAXATION FACTORIZATION DYNAMIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部