Slide burnishing process, which is a surface severe plastic deformation technique, offers an attractive post-machining alternative due to its chip-less and relatively simple operations. The purpose of the present work...Slide burnishing process, which is a surface severe plastic deformation technique, offers an attractive post-machining alternative due to its chip-less and relatively simple operations. The purpose of the present work is to investigate effects of initial turned surface roughness on the burnished surface roughness and hardness in slide burnishing. The carbon steel samples those have different roughness surfaces being treated were prepared by turning by varying the feed. Slide burnishing was then carried out by a silicon nitride ceramic ball that was loaded and fed on the turned surface of a rotating specimen using a lathe machine. It was found that the turned surfaces were smoothed drastically by the burnishing process, and that the Ra and Rz values were reduced at most by a factor of 52 and 21, respectively. However, the smoothing effect of burnishing has limit, and the limited maximum height roughness (Rz*) for burnishing smoothing increased under a higher burnishing force and with a larger ball diameter. When the Rz values of initial turned surfaces were less than the Rz*, the roughness of the burnished surfaces did not depend on the roughness of the initial turned surface and the burnishing force. There was no significant difference in the burnished microstructure and hardness under a specific burnishing force among the initial turned surface roughness, while a higher burnishing force caused a greater increase in surface hardness.展开更多
文摘Slide burnishing process, which is a surface severe plastic deformation technique, offers an attractive post-machining alternative due to its chip-less and relatively simple operations. The purpose of the present work is to investigate effects of initial turned surface roughness on the burnished surface roughness and hardness in slide burnishing. The carbon steel samples those have different roughness surfaces being treated were prepared by turning by varying the feed. Slide burnishing was then carried out by a silicon nitride ceramic ball that was loaded and fed on the turned surface of a rotating specimen using a lathe machine. It was found that the turned surfaces were smoothed drastically by the burnishing process, and that the Ra and Rz values were reduced at most by a factor of 52 and 21, respectively. However, the smoothing effect of burnishing has limit, and the limited maximum height roughness (Rz*) for burnishing smoothing increased under a higher burnishing force and with a larger ball diameter. When the Rz values of initial turned surfaces were less than the Rz*, the roughness of the burnished surfaces did not depend on the roughness of the initial turned surface and the burnishing force. There was no significant difference in the burnished microstructure and hardness under a specific burnishing force among the initial turned surface roughness, while a higher burnishing force caused a greater increase in surface hardness.