Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thin...Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.展开更多
文摘Polymer Electrolyte Fuel Cell(PEFC)is required to be operated at temperature at 100℃ for fuel cell vehicle applications during the period from 2020 to 2025 in Japan.It is expected that micro porous layer(MPL)and thinner polymer electrolyte membrane(PEM)would enhance the power generation performance of PEFC at this temperature.The key objective of this study is to analyse the impact of MPL and thickness of PEM on the temperature distributions of interface between the PEM and catalyst layer at the cathode(i.e.,the reaction surface)in a single PEFC.A 1D multi-plate heat transfer model,considering vapor transfer,which is based on temperature data of separator measured using thermograph in power generation process.It is developed to evaluate temperature at the reaction surface.This study is investigated the effect of flow rate and relative humidity of supply gases on temperature distribution on reaction surface.The study reveals that the impact of flow rate of supply gas on temperature distribution on reaction surface is smaller with and without MPL.It is observed that the even temperature distribution on reaction surface as well as higher power generation performance can be obtained with MPL irrespective of thickness of PEM and relative humidity conditions.