Background: Fusion image improves lesion detectability and can be an effective tool for percutaneous ultrasound (US)-guide procedure. We describe the clinical benefit of US-guided lung biopsy using fusion image. Purpo...Background: Fusion image improves lesion detectability and can be an effective tool for percutaneous ultrasound (US)-guide procedure. We describe the clinical benefit of US-guided lung biopsy using fusion image. Purpose: To retrospectively compare the diagnostic accuracy and complication rates of US-guided lung biopsy with B-mode alone and those of a fusion image created using real-time US and computed tomography (CT). Materials and Methods: Between September, 2013 and September, 2016, 50 peripheral lung lesions in 50 patients (40 males, 10 females;median, 74 years old) were performed by US-guided percutaneous cutting needle biopsy using the B-mode alone or fusion image. Final diagnoses were based on surgical outcomes or clinical follow-up results for at least 12 months after biopsy. To assess prebiopsy characteristics, all lesions were divided into two groups: group 1 (identification on B-mode) and group 2 (identification on fusion image). Results: Of 50 peripheral lesions, 40 lesions (80%) were detected by means of B-mode alone (group 1), and 10 lesions (20%) were identified by fusion image (group 2). The diagnostic accuracy of group 1 was 90% (36/40 lesions), and the diagnostic accuracy of group 2 was 100% (10/10 lesions). Nodule type and the size of the lesions showed significant group wise differences (p Conclusion: Fusion images created using real-time US and CT may be useful for identification of the minimal size of potential target lung lesions and may be more suitable for improved yields with US-guided lung biopsy.展开更多
.Objectives: To measure phosphorus metabolites in human parotid glands by 31P-MRS using three-dimensional chemical-shift imaging (3D-CSI), and ascertain whether this method can capture changes in adenosine triphosphat....Objectives: To measure phosphorus metabolites in human parotid glands by 31P-MRS using three-dimensional chemical-shift imaging (3D-CSI), and ascertain whether this method can capture changes in adenosine triphosphate (ATP) and phosphocreatine (PCr) levels due to saliva secretion. Study Design: The parotid glands of 20 volunteers were assessed by 31P-MRS using 3D-CSI on 3T MRI. After obtaining a first (baseline) measurement, the participants took vitamin-C tablets and measurements were obtained twice more, in a continuous manner. The peak area ratios of PCr and β-ATP were evaluated. Results: A high proportion of PCr (0.26 ± 0.08) and ATP (α: 0.16 ± 0.06;β: 0.27 ± 0.06;γ: 0.21 ± 0.03) was noted at baseline. A significant decrease in β-ATP was observed between baseline (“pre”;0.27 ± 0.06) and the first scan after vitamin-C stimulation (“post-1”;0.19 ± 0.07, p < 0.05). There was a near-significant decrease in PCr between pre (0.26 ± 0.08) and post-1 (0.23 ± 0.06, p = 0.074). Conclusions: 31P-MRS with 3D-CSI can assess the major phosphorus metabolites in human parotid glands and capture changes in their levels due to saliva secretion. This technique is simple, non-invasive, and provides new information regarding saliva secretion.展开更多
文摘Background: Fusion image improves lesion detectability and can be an effective tool for percutaneous ultrasound (US)-guide procedure. We describe the clinical benefit of US-guided lung biopsy using fusion image. Purpose: To retrospectively compare the diagnostic accuracy and complication rates of US-guided lung biopsy with B-mode alone and those of a fusion image created using real-time US and computed tomography (CT). Materials and Methods: Between September, 2013 and September, 2016, 50 peripheral lung lesions in 50 patients (40 males, 10 females;median, 74 years old) were performed by US-guided percutaneous cutting needle biopsy using the B-mode alone or fusion image. Final diagnoses were based on surgical outcomes or clinical follow-up results for at least 12 months after biopsy. To assess prebiopsy characteristics, all lesions were divided into two groups: group 1 (identification on B-mode) and group 2 (identification on fusion image). Results: Of 50 peripheral lesions, 40 lesions (80%) were detected by means of B-mode alone (group 1), and 10 lesions (20%) were identified by fusion image (group 2). The diagnostic accuracy of group 1 was 90% (36/40 lesions), and the diagnostic accuracy of group 2 was 100% (10/10 lesions). Nodule type and the size of the lesions showed significant group wise differences (p Conclusion: Fusion images created using real-time US and CT may be useful for identification of the minimal size of potential target lung lesions and may be more suitable for improved yields with US-guided lung biopsy.
文摘.Objectives: To measure phosphorus metabolites in human parotid glands by 31P-MRS using three-dimensional chemical-shift imaging (3D-CSI), and ascertain whether this method can capture changes in adenosine triphosphate (ATP) and phosphocreatine (PCr) levels due to saliva secretion. Study Design: The parotid glands of 20 volunteers were assessed by 31P-MRS using 3D-CSI on 3T MRI. After obtaining a first (baseline) measurement, the participants took vitamin-C tablets and measurements were obtained twice more, in a continuous manner. The peak area ratios of PCr and β-ATP were evaluated. Results: A high proportion of PCr (0.26 ± 0.08) and ATP (α: 0.16 ± 0.06;β: 0.27 ± 0.06;γ: 0.21 ± 0.03) was noted at baseline. A significant decrease in β-ATP was observed between baseline (“pre”;0.27 ± 0.06) and the first scan after vitamin-C stimulation (“post-1”;0.19 ± 0.07, p < 0.05). There was a near-significant decrease in PCr between pre (0.26 ± 0.08) and post-1 (0.23 ± 0.06, p = 0.074). Conclusions: 31P-MRS with 3D-CSI can assess the major phosphorus metabolites in human parotid glands and capture changes in their levels due to saliva secretion. This technique is simple, non-invasive, and provides new information regarding saliva secretion.