Background: This study investigated the safety (cytotoxicity in vitro) and pharmacological effects (ocular hypotensive effects and aqueous humor concentrations in normotensive monkeys in vivo) of latanoprost formulati...Background: This study investigated the safety (cytotoxicity in vitro) and pharmacological effects (ocular hypotensive effects and aqueous humor concentrations in normotensive monkeys in vivo) of latanoprost formulations with benzalkonium chloride (latanoprost with BAK) and without BAK (NP). Methods: A bioequivalence study of latanoprost with BAK and NP was also conducted on human healthy volunteers. Cytotoxicity and the protective effect against H2O2 stress in vitro were evaluated using human corneal epithelial cells. The ocular hypotensive effects in normotensive monkeys were measured by pneumatonometer and the aqueous humor concentrations of latanoprost free acid were determined by liquid chromatography/mass spectrum (LC/MS) methods. The bioequivalence study of latanoprost with BAK and NP was carried out as a single eye drop, two-sequence, crossover randomized study. Results: Cytotoxicity tests in vitro revealed that NP was less toxic than latanoprost with BAK and significantly inhibited H2O2 induced cell damage while latanoprost with BAK did not. The hypotensive efficacy and the latanoprost free acid concentrations in aqueous humor of each formulation were not significantly different in monkeys. In the bioequivalence study, NP was bioequivalent to latanoprost with BAK. NP was safer than latanoprost with BAK with respect the results obtained in the in vitro cytotoxicity test. There was no difference observed between latanoprost with BAK and NP in the IOP lowering effect in monkeys and healthy volunteers. Conclusion: Taken together, these results indicate that NP is as effective as latanoprost with BAK, and is more likely to maintain ocular surface health than latanoprost with BAK.展开更多
文摘Background: This study investigated the safety (cytotoxicity in vitro) and pharmacological effects (ocular hypotensive effects and aqueous humor concentrations in normotensive monkeys in vivo) of latanoprost formulations with benzalkonium chloride (latanoprost with BAK) and without BAK (NP). Methods: A bioequivalence study of latanoprost with BAK and NP was also conducted on human healthy volunteers. Cytotoxicity and the protective effect against H2O2 stress in vitro were evaluated using human corneal epithelial cells. The ocular hypotensive effects in normotensive monkeys were measured by pneumatonometer and the aqueous humor concentrations of latanoprost free acid were determined by liquid chromatography/mass spectrum (LC/MS) methods. The bioequivalence study of latanoprost with BAK and NP was carried out as a single eye drop, two-sequence, crossover randomized study. Results: Cytotoxicity tests in vitro revealed that NP was less toxic than latanoprost with BAK and significantly inhibited H2O2 induced cell damage while latanoprost with BAK did not. The hypotensive efficacy and the latanoprost free acid concentrations in aqueous humor of each formulation were not significantly different in monkeys. In the bioequivalence study, NP was bioequivalent to latanoprost with BAK. NP was safer than latanoprost with BAK with respect the results obtained in the in vitro cytotoxicity test. There was no difference observed between latanoprost with BAK and NP in the IOP lowering effect in monkeys and healthy volunteers. Conclusion: Taken together, these results indicate that NP is as effective as latanoprost with BAK, and is more likely to maintain ocular surface health than latanoprost with BAK.